From last time: \(f : X \to B \) is an elliptic/quasi-elliptic fibration, \(F_{b_i} = m_iP_i \) multiple fibers, \(R^1f_*\mathcal{O}_X = L \oplus T \), for \(L \) invertible on \(B \) and \(T \) torsion. \(b \in \text{Supp}(T) \iff h^0(\mathcal{O}_{F_b}) \geq 0 \iff h^1(\mathcal{O}_{F_b}) \geq 2 \iff F_b \) is an exceptional/wild fiber.

Theorem 1. With the above notation, \(\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_iP_i) \), where \(0 \leq a_i < m, a_i = m_i - 1 \) unless \(F_{b_i} \) is exceptional, and \(\deg(L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) \), where \(\ell(T) \) is its length as an \(\mathcal{O}_B \)-module.

Proof. We have proved most of this: specifically, we have that \(\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_iP_i) \) for \(0 \leq a_i < m \). We have a Leray spectral sequence \(E_2^{pq} = H^p(B, R^qf_*\mathcal{O}_X) \Rightarrow H^{p+q}(X, \mathcal{O}_X) \). The smaller order terms give us a short exact sequence

\[
0 \to H^0(\mathcal{O}_B) \to H^1(\mathcal{O}_X) \to H^0(R^1f_*\mathcal{O}_X) \to H^2(\mathcal{O}_B) = 0
\]

\[
0 \to H^2(\mathcal{O}_X) \to H^1(R^1f_*\mathcal{O}_X) \to 0
\]

Using this, we see that

\[
\chi(\mathcal{O}_X) = h^0(\mathcal{O}_X) - h^1(\mathcal{O}_X) + h^2(\mathcal{O}_X)
\]

\[
= h^0(\mathcal{O}_B) - h^1(\mathcal{O}_B) - h^0(L \oplus T) + h^1(L \oplus T)
\]

\[
= \chi(\mathcal{O}_B) - \chi(L) - h^0(T)
\]

\[
= -\deg L - \ell(T)
\]

by Riemann-Roch, so \(\deg L = -\chi(\mathcal{O}_X) - \ell(T) \). Since \(\deg \omega_B = 2p_a(B) - 2 \), we have \(\deg(L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) \). It remains to show that \(a_i = m_i - 1 \) if \(F_{b_i} \) is not exceptional. If fact, we can prove something stronger: let \(\alpha_i \) be the order of \(\mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i} \) in Pic \((P_i) \). Then we claim that

1. \(\alpha_i \) divides \(m_i \) and \(a_i + 1 \),
2. \(h^0(P_i, \mathcal{O}_{(\alpha_i+1)P_i}) \geq 2 \) and \(h^0(P_i, \mathcal{O}_{\alpha_iP_i}) = 1 \), and
3. \(h^0(P_i, nP_i) \) is a nondecreasing function of \(n \).

Assuming this, if \(a_i < m_i - 1 \), then \(\alpha_i < m_i \), so \(m_iP_i \) is exceptional by (b) and (c), since then \(h^0(\mathcal{O}_{m_iP_i}) \geq 2 \).

We now prove the claim. If \(m > n \geq 1 \), then \(\mathcal{O}_{mP_i} \to \mathcal{O}_{nP_i} \to 0 \) gives \(H^1(P, \mathcal{O}_{mP_i}) \to H^1(P, \mathcal{O}_{nP_i}) \to 0 \), implying that \(n \mapsto h^1(P, \mathcal{O}_{nP_i}) \) is nondecreasing. But by Riemann-Roch and the definition of canonical type, \(\chi(\mathcal{O}_{nP_i}) = 0 \), so
$h^0 = h^1$ is also nondecreasing. Now, by the definition of α_i, $\mathcal{O}_X(\alpha_i P_i) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$, implying that $\mathcal{O}_X(\alpha_i P_i) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$ as well. We thus obtain an exact sequence $0 \to \mathcal{O}_X(-\alpha_i P_i) \otimes \mathcal{O}_{P_i} = \mathcal{O}_{P_i} \to \mathcal{O}_{(\alpha_i + 1)P_i} \to \mathcal{O}_{\alpha_i P_i} \to 0$, inducing a long exact sequence

$$0 \to k \cong H^0(\mathcal{O}_{P_i}) \to H^0(\mathcal{O}_{(\alpha_i + 1)P_i}) \to H^0(\mathcal{O}_{\alpha_i P_i}) \to \cdots$$

and $h^0(\mathcal{O}_{(\alpha_i + 1)P_i}) \geq 2$. But for $1 \leq j < \alpha_i$, $L_j = \mathcal{O}_X(-j P_i) \otimes \mathcal{O}_{P_i}$ is an invertible \mathcal{O}_{P_i}-module whose degree in each component of P_i equals 0. Since $L_j \not\cong \mathcal{O}_{P_i}$, $H^0(L_j) = 0$, and $0 \to L_j \to \mathcal{O}_{(j+1)P_i} \to \mathcal{O}_{j P_i} \to 0$ gives $H^0(\mathcal{O}_{(j+1)P_i}) \cong H^0(\mathcal{O}_{j P_i})$. Since $H^0(\mathcal{O}_{P_i}) \cong k$ for P icoc, $H^0(\mathcal{O}_{2P_i}) \cong \cdots \cong H^0(\mathcal{O}_{\alpha P_i}) \cong k$ as well.

Finally,

$$(\mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i})^{m_i} \cong \mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{P_i} \cong \mathcal{O}_{P_i}$$

This is proved as follows. Since the fiber is cut out by a rational function f, $H^0(\mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{P_i}) \neq 0$. Via the exact sequence

$$0 \to \mathcal{O}_X \to \mathcal{O}_X(F_{b_i})^{1/f \sim \infty} \to \mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{F_{b_i}} \to 0$$

we get a global section of $\mathcal{O}_X(F_{b_i}) \otimes \mathcal{O}_{F_{b_i}}$. But this also has degree 0 along the components. So it must be trivial, but what we proved for icoc. We also have

$$\mathcal{O}_X((\alpha_i + 1)P_i) \otimes \mathcal{O}_{P_i} \cong \omega_X \otimes \mathcal{O}_X(P_i) \otimes \mathcal{O}_{P_i} \cong \omega_{P_i} \cong \mathcal{O}_{P_i}$$

implying that $\alpha_i | a_i + 1$ as desired. \square

Corollary 1. $K^2 = 0$.

Corollary 2. If $h^1(\mathcal{O}_X) \leq 1$, then either $a_i + 1 = m_i$ or $a_i + \alpha_i + 1 = m_i$.

Proof. Exercise. \square

Remark. Raynaud showed that m_i/α_i is a power of $p = \text{char}(k)$ (or is 1 if $\text{char}(k) = 0$). Therefore, there are no exceptional fibers in characteristic 0.

1. Classification (contd.)

If $f : X \to B$ is an elliptic/quasi-elliptic fibration, then

$$\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i), 0 \leq a_i < m_i$$

If $n \geq 1$ is a multiple of m_1, \ldots, m_r, then

$$H^0(X, \omega_X^\otimes n) = H^0(B, L^{-1} \otimes \omega_B^\otimes n \otimes \mathcal{O}_B(\sum a_i(n/m_i)b_i))$$

Now we recall the 4 classes of surfaces:

(a) \exists an integral curve C on X s.t. $K \cdot C < 0$.
Lemma 1. If X is in (a), then $\kappa(X) = -\infty$, i.e., $p_n = 0$ for all $n \geq 1$. If X is in (b), then $\kappa(X) \leq 0$. If X has an elliptic or quasielliptic fibration $f : X \to B$, and if we let $\lambda(f) = 2p_n(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) + \sum \frac{n_i}{m_i}$, then X is not in class (d) and

- X is in (a) iff $\lambda(f) < 0$, in which case $\kappa(X) = -\infty$,
- X is in (b) iff $\lambda(f) = 0$, in which case $\kappa(X) = 0$,
- X is in (c) iff $\lambda(f) > 0$, in which case $\kappa(X) = 1$.

Proof. If $K \cdot C < 0$, then X is ruled, and $\kappa(X) = \infty$. We did this before, and there is an easy way to see that $p_n = 0$ for all $n \geq 1$. For every divisor $D \in \text{Div}(X), \exists n_D$ s.t. $|D + nK| = \emptyset$ for $n > n_D$. (Since $(D + nK) \cdot C = D \cdot C + n(K \cdot C)$ becomes negative eventually. Now C is effective. We claim that $C^2 \geq 0$, so by our useful lemma, $6|D + nK|$ can’t have an effective divisor. If $C^2 < 0$, then $C \cdot K < 0$ would imply that C was an exceptional curve of the first kind, contradicting the minimality of X. Thus, $C^2 \geq 0$.) In particular, $D = K$ gives $|nK| = \emptyset$ for large enough n, implying that $|nK| = \emptyset$ for all n (since $p_n < p_m)$.

Next, assume $K \equiv 0$ (case (b)). If $p_n \geq 2$, then dim $|nK| \geq 1 \implies \exists$ a strictly positive divisor $\Delta > 0$ in $|nK|$. Then $\Delta \cdot H > 0$ for a hypersurface section, contradicting $nK \cdot H = 0$ since $K \equiv 0$. So $p_n \leq 1$ for all n, implying that $\kappa(X) \leq 0$.

Now assume X has an elliptic/quasielliptic fibration, and let $M = f_*(\omega_X) = L^{-1} \otimes \omega_B$ from last time. Then M has degree $\lambda(f)$. Let H be a very ample divisor on X. Then $\pi = f|_H : H \to B$ is some finite map of degree $H \cdot F > 0$. Now $n(K \cdot H) = \deg(\omega_X|_H) = \deg_H(\pi^*M) = (\deg \pi)(\deg_B M) = (H \cdot F)\lambda_f$. So if $\lambda_f < 0$, then $K \cdot H < 0$ and X is in (a).

Similarly, $\lambda(f) = 0 \implies K \cdot H = 0$ for every irreducible hyperplane section H, and any curve C can be written, up to \sim, as the difference of 2 such. This implies that $K \cdot C = 0 \forall C \implies K \equiv 0$. Lastly, $\lambda(f) > 0 \implies K \cdot C > 0$ for all horizontal irreducible C. For vertical C, $K \cdot C = 0$ by the formula for K, implying that $K \cdot C \geq 0$ for all C integral, $(K^2) = 0$ by the formula, implying that we are in class (c).

Let X be a minimal surface with $K^2 = 0, p_g \leq 1$ (in particular, every surface in class (b) is of this form. Then Noether’s formula gives $10 - 8q + 12p_g = b_2 + 2\Delta$. Since $p_g \leq 1, 0 \leq \Delta \leq 2p_g \leq 2$, also $\Delta = 2(q - s)$ is even, we obtain the following possibilities.

1. $b_2 = 22, b_1 = 0, \chi(\mathcal{O}_X) = 2, q = 0, p_g = 1, \Delta = 0$.
2. $b_2 = 14, b_1 = 2, \chi(\mathcal{O}_X) = 1, q = 1, p_g = 1, \Delta = 0$.

(3) \(b_2 = 10, b_1 = 0, \chi(\mathcal{O}_X) = 1 \), and either \(q = 0, p_g = 0, \Delta = 0 \) or \(q = 1, p_g = 1, \Delta = 2 \).

(4) \(b_2 = 6, b_1 = 4, \chi(\mathcal{O}_X) = 0, q = 2, p_g = 1, \Delta = 0 \).

(5) \(b_2 = 2, b_1 = 2, \chi(\mathcal{O}_X) = 0 \), and either \(q = 1, p_g = 1, \Delta = 0 \) or \(q = 2, p_g = 0, \Delta = 2 \).

Note. If \(X \) is in class (b) and \(p_g = 1 \), then \(K \sim 0 \) (because \(K = 0, H^0(K) \neq 0 \) imply that \(K \sim 0 \)).

Let’s deal with case 4 of class (b).

Proposition 1. Let \(X \) be minimal in class (b), and \(b_2 = 2, b_1 = 2 \). Then \(s = 1, \text{Alb}(X) \text{ is an elliptic curve, and } X \to \text{Alb}(X) \text{ gives an elliptic/quasielliptic fibration.} \)

Proof. Let’s see that the fibers of \(f \) are irreducible. If not, we would have \(\rho > 2(F, H, \text{component of } F) \) and \(b_2 \geq \rho > 2 \), contradicting \(b_2 = 2 \). Now, to see that the fibers are not multiple, note that \(\chi(\mathcal{O}_X) = 0 \) from the list.

(9) \[\deg(L^{-1} \otimes \omega_B) = 2p_a(B) - 2 + \chi(\mathcal{O}_X) + \ell(T) = \ell(T) \geq 0 \]

Since \(\omega_X = f^*(L^{-1} \otimes \omega_B) \otimes \mathcal{O}_X(\sum a_i P_i) \equiv 0 \), we see that \(\ell(T) \cdot f^{-1}(y) + \sum a_i P_i \equiv 0 \). But it is an effective divisor, implying that all the \(a_i = 0, \ell(T) = 0 \) and thus \(a_i = m_i - 1 \forall i \) (there are no wild fibers since \(T = 0 \)). So \(m_i = 1 \forall i \). Thus, we have integral fibers, which is the case of a bielliptic surface. \(\square \)