1. Let \(m = n - k \). We want to show that the power of \(p \) dividing \(\binom{m+k}{k} \) is the number of carries when adding \(m \) to \(k \) in base \(p \). Note that each time a carry occurs, \((a_i + p)\) in the \(i \)th place becomes \(a_{i+1} \) in the \((i+1)\)st place, so the number of carries is

\[
\text{(sum of the digits of } k) + \text{(sum of the digits of } m) - \text{(sum of the digits of } m+k)\). \frac{p-1}{p-1}
\]

Since for any integer \(a \) the power of \(p \) dividing \(a! \) is \((a - s)/(p - 1)\), where \(s \) is the sum of the digits of \(a \) in base \(p \), this expression is precisely the power of \(p \) dividing \(\binom{m+k}{k} \).

2. (a) Divide the \(m + n \) objects (from which we need to choose \(k \)) into two subcollections, \(A \) with \(m \) objects and \(B \) with \(n \) objects. Then we need to choose \(i \) objects from \(A \) and \(k - i \) objects from \(B \), where \(i \) may range from 0 to \(k \).

(b) In the equation

\[
(1 + x)^{m+n} = \left(1 + \binom{m}{1}x + \binom{m}{2}x^2 + \cdots + \binom{m}{m}x^m\right) \cdot \left(1 + \binom{n}{1}x + \cdots + \binom{n}{n}x^n\right),
\]

the coefficient of \(x^k \) in the LHS is \(\binom{m+n}{k} \), and the coefficient of \(x^k \) in the RHS is \(\sum \binom{m}{i} \binom{n}{k-i} \).

(c) Setting \(m = n = k \) gives

\[
\binom{2n}{n} = \sum_{i=0}^{n} \binom{n}{i} \binom{n}{n-i} = \sum_{i=0}^{n} \binom{n}{i}^2.
\]

(d) Consider the identity

\[
(1 - x)^{2n} (1 + x)^{2n} = (1 - x^2)^{2n}.
\]

On the RHS, the coefficient of \(x^{2n} \) is the same as the coefficient of \(x^n \) in the polynomial \((1 - x)^{2n} \), namely \((-1)^n \binom{2n}{n} \). On the LHS, the coefficient of \(x^{2n} \) is

\[
\sum_{k=0}^{2n} (-1)^k \binom{2n}{k} \binom{2n}{n-k} = \sum_{k=0}^{2n} (-1)^k \binom{2n}{k}^2,
\]

as desired.

3. (a) We know that \(p \mid \binom{p}{i} \) for \(i = 1, \ldots, p-1 \). So \((1+x)^p \equiv 1 + x^p \pmod{p} \) is immediate. We now use proof by induction, where we have just proven the base case. Now

\[
(1 + x)^p^k \equiv ((1 + x)^p)^{p^{k-1}}
\]

\[
\equiv (1 + x^p)^{p^{k-1}}
\]

\[
\equiv 1 + x^{p^k} \pmod{p}
\]

by the inductive hypothesis, completing the induction. We could also have used the result from class that \(\binom{p^k}{i} \equiv 0 \pmod{p} \) for \(i = 1, \ldots, p^k - 1 \).
(b) By part (a),

$$(1 + x)^n = (1 + x)^{a_0 + a_1 p + \cdots + a_r p^r}$$

$$= (1 + x)^{a_0} (1 + x)^{a_1 p} \cdots (1 + x)^{a_r p^r}$$

$$\equiv (1 + x)^{a_0} (1 + x)^{a_1 p} \cdots (1 + x)^{a_r p^r} \pmod{p}. $$

The only way to get $x^{b_0 + b_1 p + \cdots + b_r p^r}$ from the expansion is to choose x^{b_i} from $(1 + x)^{a_i}$, $x^{b_i p^i}$ from $(1 + x^p)^{a_i}$, \ldots, $x^{b_i p^r}$ from $(1 + x^p)^{a_r}$. So the coefficient is

$$\left(\begin{array}{c} a \\ b \\ \end{array} \right) \equiv \left(\begin{array}{c} a_r \\ b_r \\ p \\ \end{array} \right) (a_r - 1) \cdots \left(\begin{array}{c} a_0 \\ b_0 \\ p \end{array} \right) \pmod{p}.$$

4. Suppose n is prime. Then, since the binomial coefficients in the middle vanish mod p,

$$(x - a)^n \equiv x^n + (-a)^n \pmod{p}$$

Now for the converse. The polynomial congruence in particular means that n must divide $\binom{n}{k}$ for $i = 1, \ldots, n - 1$. We’ll see first that this implies n must be a power of a prime.

Let p be any prime dividing n. If n is not a power of p, then the base p expansion of n does not look like 1 followed by a bunch of zeroes, so it’s either $n, 0 \cdots 0$ with $n \geq 2$, or n, n_2, \cdots, n_q with some $n_i \geq 1$ for $i < r$. In any case, let k have the base p expansion $10 \cdots 0$ (i.e., $k = p^r$). Then subtracting k from n in base p doesn’t involve any carries, so $p \nmid \binom{n}{k}$ and therefore $n \nmid \binom{n}{k}$, contradiction. So n must be a power of p.

Let’s assume n is not a prime, so we now have $n = p^r$ with $r \geq 2$. Then it’s clear that subtracting p^{r-1} (whose base p expansion is $010 \cdots 0$ from n in base p) will involve only one carry. So $p \mid \binom{n}{p^{r-1}}$, and thus $n = p^r$ cannot divide this binomial coefficient, contradiction. Therefore, n is indeed a prime.

5. We need to show that $11n^7 + 7n^{11} + 59n$ is divisible by 77. It’s enough to show divisibility by 7 and by 11 separately. Mod 7 we get

$$11n^7 + 7n^{11} + 59n \equiv 11n^7 + 3n$$

$$\equiv 11n + 3n$$

$$\equiv 0 \pmod{7},$$

and similarly mod 11.

6. We have

$$p^x | (x^2 - 1) = (x - 1)(x + 1).$$

Suppose p is odd. Then p can’t divide both $x + 1$ and $x - 1$, since their difference 2 isn’t divisible by p, so $(p^x, x + 1) = 1$ or $(p^x, x - 1) = 1$. Hence $p^x | x - 1$ or $p^x | x + 1$, and the only two solutions are $x \equiv \pm 1 \pmod{p^x}$.

Now suppose $p = 2$. Then $x^2 \equiv 1 \pmod{2^x}$ means x must be odd, so let $x = 2^y + 1$. We have

$$2^x | (x - 1)(x + 1) = 4y(y + 1).$$

Note that if $p = 2$ then $x = 1$, and if $p = 4$ then $x = 1, 3$. So let’s assume $e \geq 3$. Since y and $y + 1$ are obviously coprime, we have $2^e - 2 | y$ or $2^e - 2 | y + 1$, i.e., $y \equiv 0 \pmod{2^e - 2}$ or $y \equiv -1 \pmod{2^e - 2}$. Then, modulo $2^e - 1$, the possible solutions for y are $0, 2^e - 2, 2^e - 1, -1$, and the corresponding solutions for x are $1, -1, 2^e - 1 + 1, 2^e - 1 - 1$. It’s easy to verify that all of these work and are distinct modulo 2^e.

7. (a) The binomial coefficient

$$\binom{x}{k} = \frac{x(x - 1) \cdots (x - k + 1)}{k!}$$
obviously has degree k in x and highest coefficient $1/k!$. We show by induction on the degree n of $p(x)$ that there are unique complex numbers c_0, \ldots, c_n such that

$$p(x) = c_n \binom{x}{n} + c_{n-1} \binom{x}{n-1} + \cdots + c_0.$$

For $n = 0$, $p(x)$ is constant, so $p(x)$ can be uniquely expressed as $p(0)\binom{x}{0}$. Now suppose we’ve proved the proposition for polynomials of degree less than n. Then if $p(x) = p_n x^n + \cdots$ we let $c_n = k! p_n$ and note that $c_n \binom{x}{n}$ is of degree n and leading coefficient p_n. So $p(x) - c_n \binom{x}{n}$ has degree less than n, and by the inductive hypothesis, equals $c_{n-1} \binom{x}{n-1} + \cdots + c_0$ for some c_{n-1}, \ldots, c_0 uniquely determined. (Note that c_n is also uniquely determined from the highest coefficient). This completes the induction.

(b) Note that

$$\Delta \binom{x}{k} = \binom{x+1}{k} - \binom{x}{k} = \frac{(x+1)x(x-1)\cdots(x-k+2) - x(x-1)\cdots(x-k+1)}{k!} = \frac{x(x-1)\cdots(x-k+2)k}{k!} = \frac{x(x-1)\cdots(x-(k-1)+1)}{(k-1)!} = \binom{x}{k-1}.$$

By linearity, if $p(x) = \sum_{k=0}^n c_k \binom{x}{k}$ then

$$\Delta p(x) = \sum_{k=0}^n c_k \Delta \binom{x}{k} = \sum_{k=1}^n c_k \binom{x}{k-1}.$$

(Note that the $k = 0$ term goes away since $\Delta \binom{x}{0} = 0$.)

(c) One direction is obvious: if $c_k \in \mathbb{Z}$ for all k, then since $\binom{m}{k}$ is always an integer, we have $p(m) = \sum_{k=0}^n c_k \binom{m}{k} \in \mathbb{Z}$ for all integers m.

Conversely, suppose $p(m) \in \mathbb{Z}$ for all m. Then we’ll show by induction on the degree n of p that the coefficients c_k for such a p must be integers.

For $n = 0$ this is obvious, so suppose we’ve proved the proposition for all polynomials with degree less than n. Consider the polynomial $q(x) = \Delta p(x)$. It has degree $n-1$ since $q(x) = \sum_{k=1}^n c_k \binom{x}{k-1}$. Also $q(m) = p(m+1) - p(m)$ is an integer for all integers m. So we get by the inductive hypothesis that c_1, \ldots, c_n are all integers. Then, evaluating p at $m = 0$,

$$p(0) = c_0 + c_1 \binom{0}{1} + \cdots + c_n \binom{0}{n} = c_0.$$

So $c_0 \in \mathbb{Z}$ as well. This completes the induction.