1. We know that

\[(1 + x)^n = \sum \binom{n}{k} x^k.\]

Now we plug in \(x = 1, \omega, \omega^2\) and add the three equations. If \(3 \nmid k\) then we’ll get a contribution of \(1^k + \omega^k + \omega^{2k} = 1 + \omega + \omega^2 = 0\), whereas if \(3 \mid k\) we’ll get a contribution of \(1^k + 1^k + 1^k = 3\). So

\[
\sum \binom{n}{3k} = \frac{(1 + 1)^n + (1 + \omega)^n + (1 + \omega^2)^n}{3}
\]

\[
= \frac{2^n + (-\omega^2)^n + (-\omega)^n}{3}
\]

\[
= \begin{cases}
(2^n + 2)/3 & \text{if } n \equiv 0 \pmod{6} \\
(2^n - 2)/3 & \text{if } n \equiv 3 \pmod{6} \\
(2^n - 1)/3 & \text{if } n \equiv 2, 4 \pmod{6} \\
(2^n + 1)/3 & \text{if } n \equiv 1, 5 \pmod{6}
\end{cases}
\]

2. We have

\[
\frac{d}{dx} \tilde{A}(x) = \frac{d}{dx} \left(\sum_{n \geq 0} a_n \frac{x^n}{n!} \right)
\]

\[
= \sum_{n \geq 1} a_n \frac{nx^{n-1}}{n!}
\]

\[
= \sum_{n \geq 0} a_{n+1} \frac{x^n}{n!},
\]

which is the exponential generating function of \(\{a_1, a_2, \ldots\}\).

3. Since \(c_n\) is \(n!\) times the coefficient of \(x^n\) in \(\tilde{A}(x) \tilde{B}(x)\),

\[
c_n = n! \sum_{k=0}^{n} \frac{a_k}{k!} \frac{b_{n-k}}{(n-k)!}
\]

\[
= \sum_{k=0}^{n} \binom{n}{k} a_k b_{n-k}.
\]

4. By part (a), \(\frac{d}{dx} E(x)\) is the exponential generating function for the sequence \(\{r, r^2, r^3, \ldots\}\). It follows that \(E'(x) = rE(x)\). Since \(E(0) = 1\), solving the differential equation, we get

\[
E(x) = \sum_{n \geq 0} \frac{r^n x^n}{n!} = e^{rx}.
\]

5. (a) In gp, \(x/(\exp(x) - 1)\) gives the sequence of \(B_n/n!\), from which we deduce

\[
\begin{array}{c|cccccccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\hline
 B_n & 1 & -\frac{1}{2} & \frac{1}{12} & 0 & -\frac{1}{120} & 0 & \frac{1}{12} & 0 & -\frac{1}{30} & 0 & \frac{1}{528}\n\end{array}
\]
(b) First, note that
\[f(x) - f(-x) = \sum_{n \text{ odd}} \frac{2B_n}{n!} x^n. \]

On the other hand,
\[
\begin{align*}
f(x) - f(-x) &= \frac{x}{e^x - 1} - \frac{-x}{e^{-x} - 1} \\
&= \frac{x}{e^x - 1} + \frac{x e^x}{1 - e^x} \\
&= \frac{x(1 - e^x)}{e^x - 1} \\
&= -x.
\end{align*}
\]

So for \(n \geq 3 \) odd, \(B_n = 0 \).

(c) Multiplying both sides of the defining equation by \(e^x - 1 \), we have
\[
x = \left(\sum_{n \geq 0} B_n \frac{x^n}{n!} \right) \left(\sum_{n > 0} \frac{x^n}{n!} \right).
\]

For \(n \geq 2 \), the coefficient of \(x^n \) is
\[
0 = \sum_{k=0}^{n-1} \binom{n}{k} B_k.
\]

(d) We have
\[
\begin{align*}
\sum_{k \geq 0} S_k(n) \frac{x^k}{k!} &= \sum_{k \geq 0} \left(1^k + 2^k + \cdots + n^k \right) \frac{x^k}{k!} \\
&= e^x + e^{2x} + \cdots + e^{nx} \\
&= e^x \cdot \frac{e^{nx} - 1}{e^x - 1} \\
&= \frac{e^{nx} - 1}{x} \cdot \frac{-x}{e^x - 1} \\
&= \left(\sum_{l=0}^{\infty} \frac{n^{l+1}}{(l+1)!} x^l \right) \left(\sum_{m=0}^{\infty} (-1)^m \frac{B_m}{m!} x^m \right).
\end{align*}
\]

Therefore,
\[
S_k(n) = k! \sum_{m=0}^{k} \frac{n^{k-m+1}}{(k-m+1)!} \cdot (-1)^m \frac{B_m}{m!} \\
= \frac{1}{k+1} \sum_{m=0}^{k} \binom{k+1}{m} (-1)^m B_m n^{k+1-m}.
\]

6. (a) If \(m = a^2 + b^2 \) and \(n = c^2 + d^2 \), then
\[
mn = (a^2 + b^2)(c^2 + d^2) = (ac - bd)^2 + (ad + bc)^2.
\]

Now if \(p \equiv 1 \pmod{4} \) then \(p \) is a sum of two squares (shown in class). If \(p \equiv 3 \pmod{4} \) then \(q^2 = q^2 + 0^2 \) is a sum of two squares. Finally, \(2 = 1^2 + 1^2 \) is a sum of two squares. So any integer of the given form is a sum of two squares.
(b) We want to use induction on n. Assume we have shown that for all integers less than n which are sums of two squares, every prime $p \equiv 3 \pmod{4}$ dividing such an integer divides it to an even power. Now suppose $n = a^2 + b^2$ and let $q \equiv 3 \pmod{4}$ be a prime dividing n (if there is no such prime, we are done). We claim that q divides a and b. Otherwise, say without loss of generality that $q \nmid b$. Since $a^2 + b^2 = n \equiv 0 \pmod{q}$, we must have $(ab^{-1})^2 \equiv -1 \pmod{q}$, which is impossible. This shows that $q \mid a, b$.

Now write $a = a'q$ and $b = b'q$, so that $n = q^2(a'^2 + b'^2)$. Letting $m = a'^2 + b'^2$, by the inductive hypothesis it follows that m is divisible by primes congruent to 3 mod 4 to even powers. Since $n = q^2m$, n satisfies the same property. With the trivial base case $n = 1$, the induction is complete.

(c) One direction is obvious: if n is a sum of two integer squares, then it’s a sum of two rational squares. Suppose now that n is a sum of two rational squares α^2 and β^2. Taking the common denominator, we write $\alpha = a/d, \beta = b/d$. Then $a^2 + b^2 = nd^2$.

Now if we consider any prime $q \equiv 3 \pmod{4}$ then q divides $a^2 + b^2$ an even number of times. Obviously q also divides d^2 an even number of times. Therefore, q divides n an even number of times, so n is of the form mentioned in part (b), and is thus a sum of two integer squares.

7. (a) We have

$$\Phi_3(x) = \frac{x^3 - 1}{x - 1} = x^2 + x + 1.$$

Hence $\omega^2 = -\omega - 1$. Now for any complex number $a + b\omega$,

$$|a + b\omega|^2 = (a + b\omega)(a + b\omega)$$
$$= (a + b\omega)(a + b\omega^2)$$
$$= a^2 + b^2 + ab(\omega + \omega^2)$$
$$= a^2 - ab + b^2.$$

So if $M = a^2 - ab + b^2 = |a + b\omega|^2$ and $N = c^2 - cd + d^2 = |d + c\omega|^2$, then

$$MN = |(a + b\omega)(d + c\omega)|^2$$
$$= |ad + bc\omega^2 + (ac + bd)\omega|^2$$
$$= |ad + bc(-\omega - 1) + (ac + bd)\omega|^2$$
$$= (ad - bc)^2 - (ad - bc)(ac + bd - bc) + (ac + bd - bc)^2$$

is of the same form.

(b) Suppose $p \equiv 2 \pmod{3}$ and $p = a^2 - ab + b^2$. Then $p \nmid a$ or $p \nmid b$, since otherwise $p = a^2 - ab + b^2$ would be divisible by p^2. In fact, if $p | a$ then $p = a^2 - ab + b^2$ implies $p | b^2$, so $p | b$ as well. Thus, p divides neither a nor b. Anyway, $(2a - b)^2 + 3b^2 = 4(a^2 - ab + b^2) \equiv 0 \pmod{p}$, so

$$\left(\frac{2a - b}{b}\right)^2 \equiv -3 \pmod{p}.$$

Therefore, -3 is a square mod p. But we’ve shown before (using quadratic reciprocity) that -3 is a square mod p if and only if $p = 3$ or $p \equiv -1 \pmod{3}$, contradiction.

8. (a) For $p = 3$, we have trivially $3 = 1^2 - (1)(-1) + (-1)^2$.

Now suppose $p \equiv 1 \pmod{3}$. We’ll prove by induction on p that p is of the form $a^2 - ab + b^2$. Assume we have proven this statement for primes less than p. (We can take as our base case $7 = 3^2 - (3)(1) + 1^2$.)

We know -3 is a square mod p, so let x be the solution to $x^2 \equiv -3 \pmod{p}$, and write $x = 2y - 1$ for some y. Then y satisfies $y^2 - y + 1 \equiv 0 \pmod{p}$. We can take $|y| < p/2$, so

$$y^2 - y + 1 < \frac{p^2}{4} + \frac{p}{2} + 1 < p^2.$$

Hence \(y^2 - y + 1 = np \) for some \(n < p \), and we have in addition that \(n > 0 \) since \(y^2 - y + 1 = (y - 1/2)^2 + 3/4 > 0 \).

Now let \(m \) be the smallest positive integer such that \(mp \) can be written in the form \(a^2 - ab + b^2 \).

Note that by the above proof \(m < p \), and if \(m = 1 \) then we are done.

Assume, for the sake of contradiction, that \(m > 1 \). Let \(mp = a^2 - ab + b^2 \). We may assume that \(g = \gcd(a, b) = 1 \), else \(g^2 | m \) and thus we can divide \(a \) and \(b \) by \(g \) to reduce \(m \) to \(m/g^2 \). Now let \(l \) be a prime dividing \(m \). Then \(l \nmid a \) or \(l \nmid b \); say \(l \nmid b \). As in Problem 7, we have

\[
\left(\frac{2a - b}{b} \right)^2 \equiv -3 \pmod{l},
\]

so \(l = 3 \) or \(l \equiv 1 \pmod{3} \).

First, suppose \(l = 3 \). Then we have \(a^2 - ab + b^2 \equiv 0 \pmod{3} \). Since 3 cannot divide both \(a \) and \(b \), it can be easily checked that the only possibility is that \(a \equiv 1 \pmod{3} \) and \(b \equiv -1 \pmod{3} \) (or vice versa). Then

\[
\left(\frac{a + b}{3} \right)^2 - \left(\frac{a + b}{3} \right) \left(\frac{2a - b}{3} \right) + \left(\frac{2a - b}{3} \right)^2 = \frac{a^2 - ab + b^2}{3} = (\frac{m}{3})p,
\]

so we have a smaller multiple of \(p \), contradiction.

Therefore we must have \(l > 3 \). Then \(x^2 - x + 1 \equiv 0 \pmod{l} \) for \(x \equiv ab^{-1} \pmod{l} \). Also, since \(l \leq m < p \), by the inductive hypothesis \(l \) is of the form \(l = c^2 - cd + d^2 \). Again, we can assume that \(l \nmid d \), so \(y^2 - y + 1 \equiv 0 \pmod{l} \) for \(y \equiv cd^{-1} \).

Now \(x^2 - x + 1 \equiv y^2 - y + 1 \pmod{l} \), so

\[
(x-y)(x+y-1) \equiv 0 \pmod{l}.
\]

Thus either \(x \equiv y \pmod{l} \) or \(x \equiv 1 - y \pmod{l} \). In the second case, replacing \((c, d) \) by \((d - c, d) \), we note that

\[
(d - c)^2 - (d - c)d + d^2 = d^2 - cd + c^2 = l
\]

and \((d - c)d^{-1} = 1 - cd^{-1} = 1 - y \), so we may assume that \(x \equiv y \pmod{l} \). It follows that \(ab^{-1} \equiv cd^{-1} \pmod{l} \), so \(l \mid ad - bc \).

Now we showed in Problem 7 that

\[
(a^2 - ab + b^2)(c^2 - cd + d^2) = (ad - bc)^2 - (ad - bc)(ac + bd - bc) + (ac + bd - bc)^2.
\]

The LHS and the first two terms of the RHS are divisible by \(l \). Thus, \(l \mid ad + bd - bc \). Writing \(ad - bc = xl \) and \(ac + bd - bc = yl \), we now have

\[
(mp)(l) = x^2l^2 - xyl^2 + y^2l^2.
\]

So

\[
\left(\frac{m}{l} \right) = x^2 - xy + y^2,
\]

showing that \(m \) is not minimal, contradiction.

Therefore every prime \(p \equiv 1 \pmod{3} \) can be written in the form \(a^2 - ab + b^2 \).

(b) One direction is easy: suppose \(n \) is positive and every prime \(q \equiv 2 \pmod{3} \) divides \(n \) to an even power. We showed that 3 and primes \(p \equiv 1 \pmod{3} \) are of the form \(a^2 - ab + b^2 \). And for \(q \equiv 2 \pmod{3} \), we have trivially that \(q^2 = q^2 - q \cdot 0 + 0^2 \) is also of this form. Since the set of numbers of the form \(a^2 - ab + b^2 \) is closed under multiplication, it follows that \(n \) is of the form \(a^2 - ab + b^2 \) for some integers \(a, b \).

To prove the converse, we first note that if \(n = a^2 - ab + b^2 \) then

\[
n = \left(a - \frac{b}{2} \right)^2 + \left(\frac{b}{2} \right)^2 > 0.
\]
(We will exclude the case $a = b = n = 0$.) We now proceed with induction on n. The base case $1 = 1^2 - 1 \cdot 0 + 0^2$ is obvious.

Suppose $q \equiv 2 \pmod{3}$ divides $4n$. We claim that $q \mid a, b$. Otherwise, without loss of generality, assume that $q \nmid b$. Then

$$\left(\frac{2a - b}{b} \right)^2 \equiv -3 \pmod{q},$$

showing that -3 is a square mod q, which is impossible. So we can write $a = a'q, b = b'q$, and thus $n = q^2(a'^2 - a' b' + b'^2)$. By the inductive hypothesis, q divides $a'^2 - a' b' + b'^2$ to an even power, so it divides n to an even power as well. This completes the induction.

9. Computing,

\[
\frac{6157}{783} = 7 + \frac{676}{783}
\]

\[
= 7 + \frac{1}{783/676}
\]

\[
= 7 + \frac{1}{1 + \frac{107}{676}}
\]

\[
= 7 + \frac{1}{1 + \frac{1}{676/107}}
\]

\[
= 7 + \frac{1}{1 + \frac{1}{6 + \frac{34}{107}}}
\]

\[
= 7 + \frac{1}{1 + \frac{1}{6 + \frac{1}{107/34}}}
\]

\[
= 7 + \frac{1}{1 + \frac{1}{6 + \frac{1}{3 + \frac{5}{34}}}}
\]

\[
= 7 + \frac{1}{1 + \frac{1}{6 + \frac{1}{3 + \frac{1}{34/5}}}}
\]

\[
= [7, 1, 6, 3, 34/5]
\]

\[
= [7, 1, 6, 3, 6, 5/4]
\]

\[
= [7, 1, 6, 3, 6, 1, 4].
\]
Next,
\[\sqrt{15} = 3 + \sqrt{15} - 3 \]
\[= 3 + \frac{6}{\sqrt{15} + 3} \]
\[= 3 + \frac{1}{(3 + \sqrt{15})/6} \]
\[= 3 + \frac{1}{1 + \frac{\sqrt{15} - 3}{6}} \]
\[= 3 + \frac{1}{1 + \frac{1}{6/(\sqrt{15} - 3)}} \]
\[= 3 + \frac{1}{1 + \frac{1}{\sqrt{15} + 3}} \]
\[= 3 + \frac{1}{1 + \frac{1}{6 + \sqrt{15} - 3}} \]
\[= [3, 1, 6, 1, \ldots] \]
\[= [3, 1, 6] . \]

10. Taking the log of both sides,
\[\log \sin z = \log z + \sum_{n \geq 1} \log \left(1 - \frac{z^2}{n^2 \pi^2} \right) . \]

Differentiating,
\[\cot z = \frac{1}{z} + \sum \frac{-2z}{n^2 \pi^2} \frac{1 - \frac{z^2}{n^2 \pi^2}}{1 - \frac{z^2}{n^2 \pi^2}} , \]
so
\[z \cot z = 1 + 2 \sum \frac{z^2}{z^2 - n^2 \pi^2} \]
\[= 1 - 2 \sum \frac{z^2}{n^2 \pi^2} \left(1 - \frac{z^2}{n^2 \pi^2} \right) \]
\[= 1 - 2 \sum \frac{z^2}{n^2 \pi^2} \left(\sum_{k \geq 0} \left(\frac{z^2}{n^2 \pi^2} \right)^k \right) \]
\[= 1 - 2 \sum_{n \geq 1} \sum_{k \geq 1} \frac{z^{2k}}{n^{2k} \pi^{2k}} . \]

On the other hand, we have
\[\frac{x}{e^x - 1} = \sum_{r \geq 0} B_r \frac{x^r}{r!} , \]
and plugging in $x = 2iz$,

\[
\sum B_r \frac{(2iz)^r}{r!} = \frac{2iz}{e^{2iz} - 1} = \frac{2iz e^{-iz}}{e^{iz} - e^{-iz}} = \frac{2iz (\cos z - i \sin z)}{2i \sin z} = z \cot z - iz.
\]

Taking the real part of this equation, we get

\[
z \cot z = \sum_{r \geq 0} B_r \frac{(2i)^r}{r!} z^r
\]

\[
= \sum_{k \geq 0} B_{2k} (-1)^k 2^{2k} \frac{z^{2k}}{(2k)!}
\]

\[
= 1 - \sum_{k \geq 1} (-1)^{k-1} \frac{B_{2k} 2^{2k}}{(2k)!} z^{2k}.
\]

Equating the two expressions, and taking the coefficient of z^{2k},

\[
(-1)^{k-1} \frac{B_{2k} 2^{2k}}{(2k)!} = \frac{2}{\pi^{2k}} \sum_{n \geq 1} \frac{1}{n^{2k}}.
\]

So we conclude that

\[
\zeta(2k) = \sum_{n \geq 1} \frac{1}{n^{2k}} = (-1)^{k-1} B_{2k} \frac{2^{2k-1}}{(2k)!} \pi^{2k}.
\]