ERRATA FOR TOPOLOGY, SECOND EDITION
(second and subsequent printings)

xii; 13 of connectedness and compactness in Chapter 3.
107; 2 \(f : [0,1] \to S^1 \)
note added: The wording is confusing. Try this: Let \(X \) and \(X' \) be
spaces having the same underlying set; let their topologies be...
118; Exercise 9, line 2 \(\mathcal{J} \neq \emptyset \).
143; 1 composite \(g \) is
151; 2* \((a_1, \ldots, a_N, 0, 0, \ldots)\)
187; 4* Let \(A \subseteq X \).
203; 12 \(b < a \). Neither \(U \) nor \(V \) contains \(a_0 \).
205; 9* if and only if \(X \) is \(T_1 \) and for every...
224; 13 open in \(X_i \) for each \(i \).
235; 13* Show that if \(X \) is Hausdorff,
237; 8 Assume \(\mathcal{A} \) is a covering of \(X \) by basis elements such that
251; 7 \(\leq 1/n \)
261; 7 Replace "paracompact" by "metrizable."
262; 8 \((x, \mathcal{E}_i)\)
263; 1* Throughout, we assume §28.
266; 8* \(\rho \) is a metric;
356; 7 Find a ball centered at the origin...
417; 11 element of \(P(W) \),
421; 8 length (at least 3), then
425; 10* \(G_1 \ast G_2 \)
445; 10 *2.
466; 4 \(= \omega_0[y_1][y_2]b \ldots \)
481; 1 with \(k \cdot h(e_0) = e_0 \).
488; 4 \(F = p^{-1}(b_0) \).
488; 11 of the subset
503; 14* either empty or a one- or two-point set!