19. COEFFICIENTS

Abelian groups can be quite complicated, even finitely generated ones. Vector spaces over a field are so much simpler! A vector space is determined up to isomorphism by a single cardinality, its dimension. Wouldn’t it be great to have a version of homology that took values in the category of vector spaces over a field?

We can do this, and more. Let \(R \) be any commutative ring at all. Instead of forming the free abelian group on \(\mathrm{Sin}_*(X) \), we could just as well form the free \(R \)-module:

\[
S_*(X; R) = R\mathrm{Sin}_*(X)
\]

This gives, first, a simplicial object in the category of \(R \)-modules. Forming the alternating sum of the face maps produces a chain complex of \(R \)-modules: \(S_n(X; R) \) is an \(R \)-module for each \(n \), and \(d : S_n(X; R) \to S_{n-1}(X; R) \) is an \(R \)-module homomorphism. The homology groups are then again \(R \)-modules:

\[
H_n(X; R) = \frac{\ker(d : S_n(X; R) \to S_{n-1}(X; R))}{\text{im}(d : S_{n+1}(X; R) \to S_n(X; R))}.
\]

This is the singular homology of \(X \) with coefficients in the commutative ring \(R \). It satisfies all the Eilenberg-Steenrod axioms, with

\[
H_n(\ast; R) = \begin{cases} R & \text{for } n = 0 \\ 0 & \text{otherwise.} \end{cases}
\]

(We could actually have replaced the ring \(R \) by any abelian group here, but this will become much clearer after we have the tensor product as a tool.) This means that all the work we have done for “integral homology” carries over to homology with any coefficients. In particular, if \(X \) is a
CHAPTER 2. COMPUTATIONAL METHODS

CW complex we have the cellular homology with coefficients in \(R, C_s(X;R) \), and its homology is isomorphic to \(H_*(X;R) \).

The coefficient rings that are most important in algebraic topology are simple ones: the integers and the prime fields \(\mathbb{F}_p \) and \(\mathbb{Q} \); almost always a PID.

As an experiment, let’s compute \(H_*(\mathbb{R}P^n;R) \) for various rings \(R \). Let’s start with \(R = \mathbb{F}_2 \), the field with 2 elements. This is a favorite among algebraic topologists, because using it for coefficients eliminates all sign issues. The cellular chain complex has \(C_*(\mathbb{R}P^n;\mathbb{F}_2) = \mathbb{F}_2 \) for \(0 \leq k \leq n \), and the differential alternates between multiplication by 2 and by 0. But in \(\mathbb{F}_2, 2 = 0 \): so \(d = 0 \), and the cellular chains coincide with the homology:

\[
H_k(\mathbb{R}P^n;\mathbb{F}_2) = \begin{cases}
\mathbb{F}_2 & \text{for } 0 \leq k \leq n \\
0 & \text{otherwise}
\end{cases}
\]

On the other hand, suppose that \(R \) is a ring in which 2 is invertible. The universal case is \(\mathbb{Z}[1/2] \), but any subring of the rationals containing \(1/2 \) would do just as well, as would \(\mathbb{F}_p \) for \(p \) odd. Now the cellular chain complex (in dimensions 0 through \(n \)) looks like

\[
R \xleftarrow{0} R \xleftarrow{2} R \xleftarrow{0} R \xleftarrow{2} \cdots \xleftarrow{2} R
\]

for \(n \) even, and

\[
R \xleftarrow{0} R \xleftarrow{2} R \xleftarrow{0} R \xleftarrow{2} \cdots \xleftarrow{0} R
\]

for \(n \) odd. Therefore for \(n \) even

\[
H_k(\mathbb{R}P^n;R) = \begin{cases}
R & \text{for } k = 0 \\
0 & \text{otherwise}
\end{cases}
\]

and for \(n \) odd

\[
H_k(\mathbb{R}P^n;R) = \begin{cases}
R & \text{for } k = 0 \\
R & \text{for } k = n \\
0 & \text{otherwise}
\end{cases}
\]

You get a much simpler result: Away from 2, even projective spaces look like points, and odd projective spaces look like spheres!

I’d like to generalize this process a little bit, and allow coefficients not just in a commutative ring, but more generally in a module \(M \) over a commutative ring; in particular, any abelian group. This is most cleanly done using the mechanism of the tensor product. That mechanism will also let us address the following natural question:

Question 19.1. Given \(H_*(X;R) \), can we deduce \(H_*(X;M) \) for an \(R \)-module \(M \)?

The answer is called the “universal coefficient theorem”. I’ll spend a few days developing what we need to talk about this.