Lecture 14: Portfolio Theory

MIT 18.S096

Dr. Kempthorne

Fall 2013

æ

Portfolio Theory Portfolio Theory Automatical and the second seco

1 Portfolio Theory

• Markowitz Mean-Variance Optimization

- Mean-Variance Optimization with Risk-Free Asset
- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Markowitz Mean-Variance Analysis (MVA)

Single-Period Analyisis

 σ

- *m* risky assets: $i = 1, 2, \ldots, m$
- Single-Period Returns: m-variate random vector

$$\mathbf{R} = [R_1, R_2, \ldots, R_m]'$$

• Mean and Variance/Covariance of Returns:

$$E[\mathbf{R}] = \boldsymbol{\alpha} = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_m \end{bmatrix}, Cov[\mathbf{R}] = \boldsymbol{\Sigma} = \begin{bmatrix} \Sigma_{1,1} & \cdots & \Sigma_{1,m} \\ \vdots & \ddots & \vdots \\ \Sigma_{m,1} & \cdots & \Sigma_{m,m} \end{bmatrix}$$

• Portfolio: *m*-vector of weights indicating the fraction of portfolio wealth held in each asset

• Portfolio Return:
$$R_{\mathbf{w}} = \mathbf{w}'\mathbf{R} = \sum_{i=1}^{m} w_i = 1.$$

• $\alpha_{\mathbf{w}} = \mathbf{w}'\mathbf{R} = \sum_{i=1}^{m} w_i R_i$ a r.v. with $\alpha_{\mathbf{w}} = E[R_{\mathbf{w}}] = \mathbf{w}'\alpha$

$$v_{w}^{2} = var[R_{w}] = w' \Sigma w$$

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Markowitz Mean Variance Analysis

Evaluate different portfolios **w** using the mean-variance pair of the portfolio: $(\alpha_{\mathbf{w}}, \sigma_{\mathbf{w}}^2)$ with preferences for

- \bullet Higher expected returns $\alpha_{\mathbf{w}}$
- Lower variance varw

Problem I: Risk Minimization: For a given choice of target mean return α_0 , choose the portfolio **w** to

Minimize: $\frac{1}{2}\mathbf{w}'\mathbf{\Sigma}\mathbf{w}$ Subject to: $\mathbf{w}'\alpha = \alpha_0$ $\mathbf{w}'\mathbf{1}_m = 1$

Solution: Apply the method of Lagrange multipliers to the convex optimization (minimization) problem subject to linear constraints:

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Risk Minimization Problem

Portfolio Theory

 Define the Lagrangian $L(\mathbf{w}, \lambda_1, \lambda_2) = \frac{1}{2} \mathbf{w}' \mathbf{\Sigma} \mathbf{w} + \lambda_1 (\alpha_0 - \mathbf{w}' \alpha) + \lambda_2 (1 - \mathbf{w}' \mathbf{1}_m)$ Derive the first-order conditions $\frac{\partial \underline{l}}{\partial \mathbf{w}} = \mathbf{0}_m = \mathbf{\Sigma}\mathbf{w} - \lambda_1 \mathbf{\alpha} - \lambda_2 \mathbf{1}_m$ $\frac{\partial \underline{l}}{\partial \lambda_1} = \mathbf{0} = \alpha_0 - \mathbf{w}' \mathbf{\alpha}$ $\frac{\partial \underline{l}}{\partial \lambda_2} = \mathbf{0} = \mathbf{1} - \mathbf{w}' \mathbf{1}_m$ • Solve for **w** in terms of λ_1, λ_2 : $\mathbf{w}_0 = \lambda_1 \mathbf{\Sigma}^{-1} \boldsymbol{\alpha} + \lambda_2 \mathbf{\Sigma}^{-1} \mathbf{1}_m$ • Solve for λ_1, λ_2 by substituting for **w**: $\begin{aligned} \alpha_0 &= \mathbf{w}_0' \alpha &= \lambda_1(\alpha' \mathbf{\Sigma}^{-1} \alpha) + \lambda_2(\alpha' \mathbf{\Sigma}^{-1} \mathbf{1}_m) \\ 1 &= \mathbf{w}_0' \mathbf{1}_m &= \lambda_1(\alpha' \mathbf{\Sigma}^{-1} \mathbf{1}_m) + \lambda_2(\mathbf{1}_m' \mathbf{\Sigma}^{-1} \mathbf{1}_m) \end{aligned}$ $\implies \begin{bmatrix} \alpha_0 \\ 1 \end{bmatrix} = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \text{ with }$ $a = (\alpha' \Sigma^{-1} \alpha), b = (\alpha' \Sigma^{-1} \mathbf{1}_m), \text{ and } c = (\mathbf{1}'_m \Sigma^{-1} \mathbf{1}_m)$ MIT 18.S096 Portfolio Theory

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Risk Minimization Problem

Variance of Optimal Portfolio with Return α_0 With the given values of λ_1 and λ_2 , the solution portfolio $\mathbf{w}_0 = \lambda_1 \mathbf{\Sigma}^{-1} \boldsymbol{\alpha} + \lambda_2 \mathbf{\Sigma}^{-1} \mathbf{1}_m$ has minimum variance equal to $\sigma_0^2 = \mathbf{w}_0' \mathbf{\Sigma} \mathbf{w}_0$ $= \lambda_1^2(\alpha' \mathbf{\Sigma}^{-1} \alpha) + 2\lambda_1 \lambda_2(\alpha' \mathbf{\Sigma}^{-1} \mathbf{1}_m) + \lambda_2^2(\mathbf{1}'_m \mathbf{\Sigma}^{-1} \mathbf{1}_m)$ $= \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}' \begin{bmatrix} a & b \\ b & c \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix}$ Substituting $\begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} a & b \\ b & c \end{bmatrix}^{-1} \begin{bmatrix} \alpha_0 \\ 1 \end{bmatrix}$ gives $\sigma_0^2 = \begin{bmatrix} \alpha_0 \\ 1 \end{bmatrix}' \begin{bmatrix} a & b \\ b & c \end{bmatrix}^{-1} \begin{bmatrix} \alpha_0 \\ 1 \end{bmatrix} = \frac{1}{ac-b^2} \left(c\alpha_0^2 - 2b\alpha_0 + a \right)$ • Optimal portfolio has variance σ_0^2 : parabolic in the mean

Portfolio Theory

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Equivalent Optimization Problems

Problem II: Expected Return Maximization: For a given choice of target return variance σ_0^2 , choose the portfolio **w** to

Maximize: $E(R_w) = w'\alpha$ Subject to: $w'\Sigma w = \sigma_0^2$ $w'\mathbf{1}_m = 1$

Problem III: Risk Aversion Optimization: Let $\lambda \ge 0$ denote the *Arrow-Pratt* risk aversion index gauging the trade-ff between risk and return. Choose the portfolio **w** to

Maximize: $\left[E(R_{\mathbf{w}}) - \frac{1}{2}\lambda var(R_{\mathbf{w}}) \right] = \mathbf{w}'\alpha - \frac{1}{2}\lambda \mathbf{w}' \mathbf{\Sigma} \mathbf{w}$ Subject to: $\mathbf{w}' \mathbf{1}_m = 1$

N.B

• Problems I,II, and III solved by equivalent Lagrangians

- Efficient Frontier: { $(\alpha_0, \sigma_0^2) = (E(R_{w_0}), var(R_{w_0}))|w_0 \text{ optimal}$ }
- Efficient Frontier: traces of α_0 (I), σ_0^2 (II), or λ (III)

	Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures
(Pas)		

Outline

Portfolio Theory

Markowitz Mean-Variance Optimization

Mean-Variance Optimization with Risk-Free Asset

- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Mean-Variance Optimization with Risk-Free Asset

Risk-Free Asset: In addition to the risky assets (i = 1, ..., m) assume there is a risk-free asset (i = 0) for which

$$R_0 \equiv r_0$$
, i.e., $E(R_0) = r_0$, and $var(R_0) = 0$.

Portfolio With Investment in Risk-Free Asset

• Suppose the investor can invest in the *m* risky investment as well as in the risk-free asset.

 $\mathbf{w}'\mathbf{1}_m = \sum_{i=1}^m w_i$ is invested in risky assets and $1 - \mathbf{w}\mathbf{1}_m$ is invested in the risk-free asset.

- If borrowing allowed, $(1 \mathbf{w} \mathbf{1}_m)$ can be negative.
- Portfolio: $R_{\mathbf{w}} = \mathbf{w}'\mathbf{R} + (1 \mathbf{w}'\mathbf{1}_m)R_0$, where

 $\mathbf{R} = (R_1, \ldots, R_m)$, has expected return and variance:

$$\begin{array}{rcl} \alpha_{\mathbf{w}} &=& \mathbf{w}' \boldsymbol{\alpha} + (1 - \mathbf{w}' \mathbf{1}_m) r_0 \\ \sigma_{\mathbf{w}}^2 &=& \mathbf{w}' \boldsymbol{\Sigma} \mathbf{w} \end{array}$$

Note: R_0 has zero variance and is uncorrelated with $\mathbf{R} \rightarrow \mathbf{C} = \mathbf{R} \rightarrow \mathbf{R}$

Mean-Variance Optimization with Risk-Free Asset Portfolio Theory

Mean-Variance Optimization with Risk-Free Asset

Problem I': Risk Minimization with Risk-Free Asset For a given choice of target mean return α_0 , choose the portfolio w to

Minimize: $\frac{1}{2}\mathbf{w}'\mathbf{\Sigma}\mathbf{w}$ Subject to: $\mathbf{w}' \boldsymbol{\alpha} + (1 - \mathbf{w}' \mathbf{1}_m) r_0 = \alpha_0$

Solution: Apply the method of Lagrange multipliers to the convex optimization (minimization):

Define the Lagrangian

$$L(\mathbf{w}, \lambda_1) = \frac{1}{2} \mathbf{w}' \mathbf{\Sigma} \mathbf{w} + \lambda_1 [(\alpha_0 - r_0) - \mathbf{w}'(\alpha - \mathbf{1}_m r_0)]$$

Derive the first-order conditions

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{0}_m = \mathbf{\Sigma}\mathbf{w} - \lambda_1[\alpha - \mathbf{1}_m r_0]$$
$$\frac{\partial L}{\partial \lambda_1} = \mathbf{0} = (\alpha_0 - r_0) - \mathbf{w}'(\alpha - \mathbf{1}_m r_0)$$

• Solve for **w** in terms of λ_1 : $\mathbf{w}_0 = \lambda_1 \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0]$ and $\lambda_1 = (\alpha_0 - r_0) / [(\alpha - \mathbf{1}_m r_0)' \mathbf{\Sigma}^{-1} (\alpha - \mathbf{1}_m r_0)]$ Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Mean-Variance Optimization with Risk-Free Asset

Available Assets for Investment:

• Risky Assets (i = 1, ..., m) with returns: $\mathbf{R} = (R_1, ..., R_m)$ with

 $E[\mathbf{R}] = \alpha$ and $Cov[\mathbf{R}] = \Sigma$

• Risk-Free Asset with return R_0 : $R_0 \equiv r_0$, a constant.

Optimal Portfolio *P*: **Target Return** = α_0

- Invests in risky assets according to fractional weights vector: $\mathbf{w}_0 = \lambda_1 \mathbf{\Sigma}^{-1} [\boldsymbol{\alpha} - \mathbf{1}_m r_0], \text{ where}$ $\lambda_1 = \lambda_1(P) = \frac{(\alpha_0 - r_0)}{(\boldsymbol{\alpha} - \mathbf{1}_m r_0)' \mathbf{\Sigma}^{-1} (\boldsymbol{\alpha} - \mathbf{1}_m r_0)}$
- Invests in the risk-free asset with weight $(1 \mathbf{w}_0' \mathbf{1}_m)$
- Portfolio return: $R_P = \mathbf{w}_0' \mathbf{R} + (1 \mathbf{w}_0' \mathbf{1}_m) r_0$

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Mean-Variance Optimization with Risk-Free Asset

• Portfolio return: $R_P = \mathbf{w}'_0 \mathbf{R} + (1 - \mathbf{w}'_0 \mathbf{1}_m) r_0$

• Portfolio variance:

$$Var(R_P) = Var(\mathbf{w}_0'\mathbf{R} + (1 - \mathbf{w}_0'\mathbf{1}_m)r_0) = Var(\mathbf{w}_0'\mathbf{R})$$

 $= \mathbf{w}_0'\mathbf{\Sigma}\mathbf{w}_0 = (\alpha_0 - r_0)^2/[(\alpha - \mathbf{1}_m r_0)'\mathbf{\Sigma}^{-1}(\alpha - \mathbf{1}_m r_0)]$

Market Portfolio M

• The fully-invested optimal portfolio with $\mathbf{w}_M: \mathbf{w}_M' \mathbf{1}_m = 1.$ I.e.

$$\mathbf{w}_{M} = \lambda_{1} \mathbf{\Sigma}^{-1} [\boldsymbol{\alpha} - \mathbf{1}_{m} r_{0}], \text{ where} \\ \lambda_{1} = \lambda_{1}(M) = \left(\mathbf{1}'_{m} \mathbf{\Sigma}^{-1} [\boldsymbol{\alpha} - \mathbf{1}_{m} r_{0}]\right)^{-1}$$

• Market Portfolio Return: $R_M = \mathbf{w}'_M \mathbf{R} + 0 \cdot R_0$

$$E(R_M) = E(\mathbf{w}'_M \mathbf{R}) = \mathbf{w}'_M \alpha = \frac{(\alpha' \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])}{(\mathbf{1}'_m \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])}$$

= $r_0 + \frac{[\alpha - \mathbf{1}_m r_0]' \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])}{(\mathbf{1}'_m \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])}$
 $Var(R_M) = \mathbf{w}'_M \mathbf{\Sigma} \mathbf{w}_M$
= $\frac{(E(R_M) - r_0)^2}{[(\alpha - \mathbf{1}_m r_0)' \mathbf{\Sigma}^{-1} (\alpha - \mathbf{1}_m r_0)]} = \frac{[\alpha - \mathbf{1}_m r_0]' \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])^2}{(\mathbf{1}'_m \mathbf{\Sigma}^{-1} [\alpha - \mathbf{1}_m r_0])^2}$

Tobin's Separation Theorem: Every optimal portfolio invests in a combination of the risk-free asset and the Market Portfolio.

Let *P* be the optimal portfolio for target expected return α_0 with risky-investment weights \mathbf{w}_P , as specified above.

• P invests in the same risky assets as the Market Portfolio and in the same proportions! The only difference is the total weight, $w_M = \mathbf{w}'_P \mathbf{1}_m$: $w_{M} = \frac{\lambda_{1}(P)}{\lambda_{1}(M)} = \frac{(\alpha_{0} - r_{0})/[(\alpha - \mathbf{1}_{m}r_{0})\boldsymbol{\Sigma}^{-1}(\alpha - \mathbf{1}_{m}r_{0})]}{(\mathbf{1}'_{m}\boldsymbol{\Sigma}^{-1}[\alpha - \mathbf{1}_{m}r_{0}])^{-1}}$ $= (\alpha_0 - r_0) \frac{(\mathbf{1}'_m \boldsymbol{\Sigma}^{-1} [\boldsymbol{\alpha} - \mathbf{1}_m r_0])}{[(\boldsymbol{\alpha} - \mathbf{1}_m r_0) \boldsymbol{\Sigma}^{-1} (\boldsymbol{\alpha} - \mathbf{1}_m r_0)]}$ $= (\alpha_0 - r_0)/(E(R_M) - r_0)$ • $R_P = (1 - w_M)r_0 + w_M R_M$ • $\sigma_P^2 = var(R_P) = var(w_M R_M) = w_M^2 Var(R_M) = w_M^2 \sigma_M^2$ • $E(R_P) = r_0 + w_M(E(R_M) - r_0)$ MIT 18.S096 Portfolio Theory

Portfolio Theory Portfolio Theory Portfolio Cheory Portfolio Optimization with Risk-Free Asset Von Neuman-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Mean Variance Optimization with Risk-Free Asset

Capital Market Line (CML): The efficient frontier of optimal portfolios as represented on the (σ_P, μ_P) -plane of return expectation (μ_P) vs standard-deviation (σ_P) for all portfolios.

$$\begin{aligned} \mathsf{CML} &= \{(\sigma_P, E(R_P)) : \text{ P optimal with } w_M = \mathbf{w}'_P \mathbf{1}_m > 0\} \\ &= \{(\sigma_P, \mu_P) = (\sigma_P, r_0 + w_M(\mu_M - r_0)), w_M \ge 0\} \end{aligned}$$

Risk Premium/Market Price of Risk

$$E(R_P) = r_0 + w_M [E(R_M) - r_0]$$

= $r_0 + \left(\frac{\sigma_P}{\sigma_M}\right) [E(R_M) - r_0]$
= $r_0 + \sigma_P \left[\frac{E(R_M) - r_0}{\sigma_M}\right]$

• $\left[\frac{E(R_M)-r_0}{\sigma_M}\right]$ is the 'Market Price of Risk'

• Portfolio *P*'s expected return increases linearly with risk (σ_P) .

Mean-Variance Optimization with Risk-Free Asset

Mean Variance Optimization

Key Papers

- Markowitz, H. (1952), "Portfolio Selection", Journal of Finance, 7 (1): 77-91.
- Tobin, J. (1958) "Liquidity Preference as a Behavior Towards Risk,", Review of Economic Studies, 67: 65-86.
- Sharpe, W.F. (1964), "Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk," Journal of Finance, 19: 425-442.
- Lintner, J. (1965), "The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets," Review of Economics and Statistics, 47: 13-37.
- Fama, E.F. (1970), "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance," 25: 383-417. ・ 同 ト ・ ヨ ト ・ ヨ ト

Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

- Markowitz Mean-Variance Optimization
- Mean-Variance Optimization with Risk-Free Asset
- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asse Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Von Neumann-Morgenstern Utility Theory

- Rational portfolio choice must apply preferences based on Expected Utility
- The optimal portfolio solves the Expected Utility Maximization Problem

Investor: Initial wealth W_0

Action: Portfolio choice P (investment weights-vector \mathbf{w}_P)

Outcome: Wealth after one period $W = W_0[1 + R_P]$.

Utility Function: $u(W) : [0, \infty) \longrightarrow \Re$

Quantitative measure of outcome value to investor.

Expected Utility: $E[u(W)] = E[u(W_0[1 + R_p])]$

Utility Theory

Utility Functions

- Basic properties:
 - u'(W) > 0: increasing (always)
 - u''(W) < 0: decreasing marginal utility (typically)
- Defnitions of risk aversion:
 - Absolute Risk Aversion: $\lambda_A(W) = -\frac{u''(W)}{u'(W)}$
 - Relative Risk Aversion: $\lambda_R(W) = -\frac{Wu''(W)}{u'(W)}$
- If u(W) is smooth (bounded derivatives of sufficient order), $u(W) \approx u(w_*) + u'(w_*)(W - w_*) + \frac{1}{2}u''(w_*)(W - w_*)^2 + \cdots$ $= (constants) + u'(w_*)[W - \frac{1}{2}\lambda_A(w_*)(W - w_*)^2] + \cdots$ Taking expectations

$$E[u(W)] \propto E[W - \frac{1}{2}\lambda(W - w_*)^2] \approx E[W] - \frac{1}{2}\lambda Var[W]$$
(setting $w_* = E[W]$)

	Markowitz Mean-Variance Optimization
	Mean-Variance Optimization with Risk-Free Asset
folio Theory	Von Neumann-Morgenstern Utility Theory
Tono Theory	Portfolio Optimization Constraints
	Estimating Return Expectations and Covariance

Utility Functions

Po

Linear Utility:

$$u(W) = a + bW, \qquad b > 0$$

Quadratic Utility:

Exponential Utility:

Power Utility:

Logarithmic Utility:

$$\begin{split} u(W) &= W - \frac{1}{2}\lambda W^2, \quad \lambda > 0, \\ & (\text{ and } W < \lambda^{-1}) \\ u(W) &= 1 - e^{-\lambda W}, \lambda > 0 \\ \text{Constant Absolute Risk Aversion (CARA)} \\ u(W) &= W^{(1-\lambda)}, \quad 0 < \lambda < 1 \\ \text{Constant Relative Risk Aversion (CRRA)} \\ u(W) &= ln(W) \end{split}$$

Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures
------------------	--

- Markowitz Mean-Variance Optimization
- Mean-Variance Optimization with Risk-Free Asset
- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Portfolio Optimization Constraints

Long Only: $\mathbf{w} : w_j \ge 0, \forall j$ Holding Constraints: $L_i \le w_i \le U_i$ where $\mathbf{U} = (U_1, \dots, U_m)$ and $\mathbf{L} = (L_1, \dots, L_m)$ are upper and lower bounds for the *m* holdings.

Turnover Constraints:

 $\begin{array}{l} \Delta \mathbf{w} = (\Delta w_1, \ldots, \Delta w_m) \\ \text{The change vector of portfolio holdings satisfies} \\ |\Delta w_j| \leq U_i, \text{ for individual asset limits } \mathbf{U} \\ \sum_{i=1}^m |\Delta w_j| \leq U_*, \text{ for portfolio limit } U_* \end{array}$

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory **Portfolio Optimization Constraints** Estimating Return Expectations and Covariance Alternative Risk Measures

Portfolio Optimization Constraints

Benchmark Exposure Constraints:

 \mathbf{w}_B the fractional weights of a Benchmark portfolio $R_B = \mathbf{w}_B \mathbf{R}$, return of Benchmark portfolio (e.g., S&P 500 Index, NASDAQ 100, Russell 1000/2000) $|\mathbf{w} - \mathbf{w}_B| = \sum_{i=1}^{m} |[\mathbf{w} - \mathbf{w}_B]_i| < U_B$ Tracking Error Constraints

Tracking Error Constraints:

For a given Benchmark portfolio B with fractional weights \mathbf{w}_B , compute the variance of the Tracking Error

$$TE_P = (R_P - R_B) = [\mathbf{w} - \mathbf{w}_B]\mathbf{R}$$

$$var(TE_P) = var([\mathbf{w} - \mathbf{w}_B]\mathbf{R})$$

$$= [\mathbf{w} - \mathbf{w}_B]'Cov(\mathbf{R})[\mathbf{w} - \mathbf{w}_B]$$

$$= [\mathbf{w} - \mathbf{w}_B]'\Sigma[\mathbf{w} - \mathbf{w}_B]$$

Apply the constraint:

$$var(TE_P) = [\mathbf{w} - \mathbf{w}_B]' \Sigma [\mathbf{w} - \mathbf{w}_B] \leq \overline{\sigma}_{TE}^2 + \overline{z} + \overline{z} + \overline{z} + \overline{z}$$
MIT 18.5096 Portfolio Theory 23

Portfolio Optimization Constraints

Portfolio Optimization Constraints

Risk Factor Constraints:

For Factor Model

$$R_{i,t} = \alpha_i + \sum_{k=1}^{K} \beta_{i,k} f_{j,t} + \epsilon_{i,t}$$

- Constrain Exposure to Factor k $\left|\sum_{i=1}^{m}\beta_{i,k}w_{i}\right| < U_{k},$
- Neutralize exposure to all risk factors:

$$|\sum_{i=1}^{m} \beta_{i,k} w_i| = 0, \ k = 1, \dots, K$$

Other constraints:

- Minimum Transaction Size
- Minimum Holding Size
- Integer Constraints

Portfolio Theory Portfolio Theory Portfolio Theory Portfolio Alexandria and the state of the sta

General Linear and Quadratic Constraints

For

- w : target portfolio
- $\mathbf{x} = \mathbf{w} \mathbf{w}_0$: transactions given current portfolio \mathbf{w}_0
- **w**_B : benchmark portfolio

Linear Constraints: Specify *m*-column matrices A_w, A_x, A_B

and *m*-vectors u_w , u_x , u_B and constrain

$$\begin{array}{ccc} A_w \mathbf{w} & \leq u_w \\ \mathbf{A} \mathbf{v} & \leq u \end{array}$$

$$A_B(\mathbf{w} - \mathbf{w}_B) \leq u_B$$

Quadratic Constraints: Specify $m \times m$ -matrices Q_w, Q_x, Q_B

and *m*-vectors q_w , q_x , q_B and constrain

$$\mathbf{w}' Q_w \mathbf{w} \leq q_w$$

 $\mathbf{x}' Q_x \mathbf{x} \leq q_x$
 $(\mathbf{w} - \mathbf{w}_B)' Q_B (\mathbf{w} - \mathbf{w}_B) \leq q_B$ and \mathbf{w}_B we have \mathbf{w}_B

Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

- Markowitz Mean-Variance Optimization
- Mean-Variance Optimization with Risk-Free Asset
- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Estimating Return Expectations and Covariance

Sample Means and Covariance

- Motivation
 - Least squares estimates
 - Unbiased estimates
 - Maximum likelihood estimates under certain Gaussian assumptions

Issues:

- Choice of estimation period
- Impact of estimation error (!!)

Alternatives

- Apply exponential moving averages
- Apply dynamic factor models
- Conduct optimization with alternative simple models
 - Single-Index Factor Model (Sharpe)
 - Constant correlation model

Portfolic	Theory Hand	rkowitz Mean-Variance Opti nan-Variance Optimization wi n Neumann-Morgenstern Uti rtfolio Optimization Constrai cimating Return Expectations ernative Risk Measures	mization ith Risk-Free Asset ility Theory ints s and Covariance

- Markowitz Mean-Variance Optimization
- Mean-Variance Optimization with Risk-Free Asset
- Von Neumann-Morgenstern Utility Theory
- Portfolio Optimization Constraints
- Estimating Return Expectations and Covariance
- Alternative Risk Measures

Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures
------------------	---

Alternative Risk Measures

When specifying a portfolio P by \mathbf{w}_P , such that $R_P = \mathbf{w}'_P \mathbf{R}$, with asset returns $\mathbf{R} \sim (\alpha, \mathbf{\Sigma})$. consider optimization problems replacing the portfolio variance with alternatives

Mean Absolute Deviation: $MAD(R_P) = E(|\mathbf{w}'(R_p - \alpha)|)$ $= E(|\sum_{i=1}^{m} w_i(R_i - \alpha_i)|)$ Linear programming with linear/guadratic constraints

Semi-Variance:

 $SemiVar(R_p) = E\left[min(R_p - E[R_p], 0)^2\right]$ Down-side variance (probability-weighted)

Portfolio Theory Portfolio Theory Portfolio Optimization with Kisk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures	Portfolio Theory	Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures	
---	------------------	---	--

Alternative Risk Measures

Value-at-Risk(VAR): RiskMetrics methodology developed by JP Morgan. VaR is the magnitude of the percentile loss which occurs rarely, i.e., with probability ϵ (= 0.05, 0.01, or 0.001) $VaR_{1-\epsilon}(R_p) = min\{r : Pr(R_p \le -r) \le \epsilon\}$

- Tracking and reporting of risk exposures in trading portfolios
- VaR is not convex, or sub-additive, i.e,

 $VaR(R_{P_1} + R_{P_2}) \le VaR(R_{P_1}) + VaR(R_{P_2})$

may not hold (VaR does not improve with diversification).

Conditional Value-at-Risk (CVar): Expected shortfall, expected tail loss, tail *VaR* given by

$$CVaR_{1-\epsilon}(R_p) = E\left[-R_P \mid -R_P \geq VaR_{1-\epsilon}(R_p)\right]$$

See Rockafellar and Uryasev (2000) for optimization of CVaR

Alternative Risk Measures

Coherent Risk Measures A risk measure $s(\cdot)$ for portfolio return distributions is coherent if it has the following properties: Monotonicity: If $R_P < R_{P'}$, w.p.1, then $s(R_P) > s(R_{P'})$

Subadditivity: $s(R_P + R_{P'}) \le s(R_P) + s(R_{P'})$ Positive homogeneity: $s(cR_P) = cs(R_P)$ for any real c > 0

Translational invariance: $s(R_P + a) \leq s(R_P) - a$, for any real a.

N.B.

- $Var(R_p)$ is not coherent (not monotonic)
- VAR is not coherent (not subadditive)
- CVaR is coherent.

Portfolio Theory Portfolio Theory Alternative Risk Results and Covariance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures

Risk Measures with Skewness/Kurtosis

Consider the Taylor Series expansion of the u(W) about $w_* = E(W)$, where $W = W_0(1 + R_P)$ is the wealth after one period when initial wealth W_0 is invested in portfolio P.

$$u(W) = u(w_*) + u'(w_*)(W - w_*) + \frac{1}{2}u''(w_*)(W - w_*)^2 + \frac{1}{3!}u^{(3)}(w_*)(W - w_*)^3 + \frac{1}{4!}u^{(4)}(w_*)(W - w_*)^4 + O[(W - w_*)^5]$$

Taking expectations

$$E[u(W)] = u(w_*) + 0 + \frac{1}{2}u''(w_*)var(W) + \frac{1}{3!}u^{(3)}(w_*)Skew(W) + \frac{1}{4!}u^{(4)}(w_*)Kurtosis(W) + O[(W - w_*)^5]$$

Portfolio Optimization with Higher Moments

Max: $E(R_P) - \lambda_1 Var(R_P) + \lambda_2 Skew(R_P) - \lambda_3 Kurtosis(R_P)$ Subject to: $\mathbf{w'1}_m = 1$, where $R_P = \mathbf{w'}R_P$

Markowitz Mean-Variance Optimization Mean-Variance Optimization with Risk-Free Asset Von Neumann-Morgenstern Utility Theory Portfolio Optimization Constraints Estimating Return Expectations and Covariance Alternative Risk Measures	
---	--

Portfolio Optimization with Higher Moments

Notes:

- Higher positive Skew is preferred.
- Lower even moments may be preferred (less dispersion)
- Estimation of Skew and Kurtosis complex: outlier sensitivity; requires large sample sizes.
- Optimization approaches
 - Multi-objective optimization methods.
 - Polynomial Goal Programming (PGP).

18.S096 Topics in Mathematics with Applications in Finance $_{\mbox{Fall 2013}}$

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.