18.S66 PROBLEMS #3
Spring 2003

Beginning with this assignment we will (subjectively) indicate the difficulty level of each problem as follows:

1. easy
2. moderately difficult
3. difficult.

In general, these difficulty ratings are based on the assumption that the solutions to the previous problems are known.

A partition λ of $n \geq 0$ (denoted $\lambda \vdash n$ or $|\lambda| = n$) is an integer sequence $(\lambda_1, \lambda_2, \ldots)$ satisfying $\lambda_1 \geq \lambda_2 \geq \cdots \geq 0$ and $\sum \lambda_i = n$. Trailing 0’s are often ignored, e.g., $(4, 3, 3, 1, 1)$ represents the same partition of 12 as $(4, 3, 3, 1, 1, 0, 0, 0, \ldots)$ or $(4, 3, 3, 1, 1, 0, 0, \ldots)$. The terms $\lambda_i > 0$ are called the parts of λ. The conjugate partition to λ, denoted λ', has $\lambda_i - \lambda_{i+1}$ parts equal to i for all $i \geq 1$. The (Young) diagram of λ is a left-justified array of squares with λ_i squares in the ith row. Notation such as $u = (2, 3) \in \lambda$ means that u is the square of the diagram of λ in the second row and third column.

69. [1] Let λ be a partition. Then

$$\sum \limits_i (i - 1)\lambda_i = \sum \limits_i \left(\frac{\lambda_i^2}{2}\right).$$

70. [1] Let λ be a partition. Then

$$\sum \limits_i \left[\frac{\lambda_{2i-1}}{2}\right] = \sum \limits_i \left[\frac{\lambda_{2i-1}}{2}\right]$$

$$\sum \limits_i \left[\frac{\lambda_{2i-1}}{2}\right] = \sum \limits_i \left[\frac{\lambda_{2i}}{2}\right]$$

$$\sum \limits_i \left[\frac{\lambda_{2i}}{2}\right] = \sum \limits_i \left[\frac{\lambda_{2i}}{2}\right].$$
71. [1] The number of partitions of n with largest part k equals the number of partitions of n with exactly k parts.

72. [2] Fix $k \geq 1$. Let λ be a partition. Define $f_k(\lambda)$ to be the number of parts of λ equal to k, e.g., $f_3(8, 5, 5, 3, 3, 3, 2, 1, 1) = 4$. Define $g_k(\lambda)$ to be the number of integers i for which λ has at least k parts equal to i, e.g., $g_3(8, 8, 8, 6, 6, 3, 2, 2, 1) = 2$. Then

$$\sum_{\lambda \vdash n} f_k(\lambda) = \sum_{\lambda \vdash n} g_k(\lambda).$$

73. [2] The number of partitions of n with odd parts equals the number of partitions of n with distinct parts.

74. [2] Let $\sigma(n)$ denote the sum of all (positive) divisors of $n \in \mathbb{P}$; e.g., $\sigma(12) = 1 + 2 + 3 + 4 + 6 + 12 = 28$. Let $p(n)$ denote the number of partitions of n (with $p(0) = 1$). Then

$$n \cdot p(n) = \sum_{i=1}^{n} \sigma(i) p(n - i).$$

75. [2] The number of self-conjugate partitions of n equals the number of partition of n into distinct odd parts.

76. [3] Let $f(n)$ be the number of partitions of n into an even number of parts, all distinct. Let $g(n)$ be the number of partitions of n into an odd number of parts, all distinct. For instance, $f(7) = 3$, corresponding to $6 + 1 = 5 + 2 = 4 + 3$, and $g(7) = 2$, corresponding to $7 = 4 + 2 + 1$. Then

$$f(n) - g(n) = \begin{cases} (-1)^k, & \text{if } n = k(3k \pm 1)/2 \text{ for some } k \in \mathbb{N} \\ 0, & \text{otherwise.} \end{cases}$$

NOTE. This result is usually stated in generating function form, viz.,

$$\prod_{n \geq 1} (1 - x^n) = 1 + \sum_{k \geq 1} (-1)^k \left(x^{k(3k-1)/2} + x^{k(3k+1)/2} \right),$$

and is known as *Euler’s pentagonal number formula.*
77. [2] Let \(f(n) \) (respectively, \(g(n) \)) be the number of partitions \(\lambda = (\lambda_1, \lambda_2, \ldots) \) of \(n \) into distinct parts, such that the largest part \(\lambda_1 \) is even (respectively, odd). Then

\[
f(n) - g(n) = \begin{cases}
1, & \text{if } n = k(3k + 1)/2 \text{ for some } k \geq 0 \\
-1, & \text{if } n = k(3k - 1)/2 \text{ for some } k \geq 1 \\
0, & \text{otherwise.}
\end{cases}
\]

78. [3] For \(n \in \mathbb{N} \) let \(f(n) \) (respectively, \(g(n) \)) denote the number of partitions of \(n \) into distinct parts such that the smallest part is odd and with an even number (respectively, odd number) of even parts. Then

\[
f(n) - g(n) = \begin{cases}
1, & \text{if } n \text{ is a square} \\
0, & \text{otherwise.}
\end{cases}
\]

79. (a) (*) The number of partitions of \(n \) into parts \(\equiv \pm 1 \pmod{5} \) is equal to the number of partitions of \(n \) whose parts differ by at least 2.

(b) (*) The number of partitions of \(n \) into parts \(\equiv \pm 2 \pmod{5} \) is equal to the number of partitions of \(n \) whose parts differ by at least 2 and for which 1 is not a part.

Note. This is the combinatorial formulation of the famous Rogers-Ramanujan identities. One of the known proofs of this result has been converted into a complicated recursive bijection. What is wanted is a “direct” bijection whose inverse is easy to describe.

80. [3] The number of partitions of \(n \) into parts \(\equiv 1, 5, \text{ or } 6 \pmod{8} \) is equal to the number of partitions into parts that differ by at least 2, and such that odd parts differ by at least 4.

81. [3] A lecture hall partition of length \(k \) is a partition \(\lambda = (\lambda_1, \ldots, \lambda_k) \) (some of whose parts may be 0) satisfying

\[
0 \leq \frac{\lambda_k}{1} \leq \frac{\lambda_{k-1}}{2} \leq \cdots \leq \frac{\lambda_1}{k}.
\]

The number of lecture hall partitions of \(n \) of length \(k \) is equal to the number of partitions of \(n \) whose parts come from the set \(\{1, 3, 5, \ldots, 2k-1\} \) (with repetitions allowed).
82. (*) The Lucas numbers L_n are defined by $L_1 = 1$, $L_2 = 3$, $L_{n+1} = L_n + L_{n-1}$ for $n \geq 2$. Let $f(n)$ be the number of partitions of n all of whose parts are Lucas numbers L_{2n+1} of odd index. For instance, $f(12) = 5$, corresponding to

$$
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \\
4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \\
4 + 4 + 1 + 1 + 1 \\
4 + 4 + 4 \\
11 + 1
$$

Let $g(n)$ be the number of partitions $\lambda = (\lambda_1, \lambda_2, \ldots)$ such that $\lambda_i/\lambda_{i+1} > \frac{1}{2}(3 + \sqrt{5})$ whenever $\lambda_{i+1} > 0$. For instance, $g(12) = 5$, corresponding to

$$
12, \ 11 + 1, \ 10 + 2, \ 9 + 3, \ 8 + 3 + 1.
$$

Then $f(n) = g(n)$ for all $n \geq 1$.

83. [2.5] Let $A(n)$ denote the number of partitions $(\lambda_1, \ldots, \lambda_k) \vdash n$ such that $\lambda_k > 0$ and

$$
\lambda_i > \lambda_{i+1} + \lambda_{i+2}, \ 1 \leq i \leq k - 1
$$

(with $\lambda_{k+1} = 0$). Let $B(n)$ denote the number of partitions $(\mu_1, \ldots, \mu_j) \vdash n$ such that

- Each μ_i is in the sequence $1, 2, 4, \ldots, g_m, \ldots$ defined by
 $$
g_1 = 1, \ g_2 = 2, \ g_m = g_{m-1} + g_{m-2} + 1 \text{ for } m \geq 3.
$$
- If $\mu_1 = g_m$, then every element in $\{1, 2, 4, \ldots, g_m\}$ appears at least once as a μ_i.

Then $A(n) = B(n)$ for all $n \geq 1$.

Example. $A(7) = 5$ because the relevant partitions are (7), $(6, 1)$, $(5, 2)$, $(4, 3)$, $(4, 2, 1)$, and $B(7) = 5$ because the relevant partitions are $(4, 2, 1)$, $(2, 2, 2, 1)$, $(2, 2, 1, 1, 1)$, $(2, 1, 1, 1, 1, 1)$, $(1, 1, 1, 1, 1, 1, 1)$.

84. (*) Let $S \subseteq \mathbb{P}$ and let $p(S, n)$ denote the number of partitions of n whose parts belong to S. Let

$$
S = \pm\{1, 4, 5, 6, 7, 9, 10, 11, 13, 15, 16, 19 \text{ (mod 40)}\} \\
T = \pm\{1, 3, 4, 5, 9, 10, 11, 14, 15, 16, 17, 19 \text{ (mod 40)}\},
$$
where

$$\pm\{a, b, \ldots \pmod{m}\} = \{n \in \mathbb{P} : n \equiv \pm a, \pm b, \ldots \pmod{m}\}.$$

Then \(p(S, n) = p(T, n - 1)\) for all \(n \geq 1\).

Note. In principle the known proof of this result and of Problem 85 below can be converted into a complicated recursive bijection, as was done for Problem 79. Just as for Problem 79, what is wanted is a “direct” bijection whose inverse is easy to describe. To my knowledge no one has tried to give a bijective solution to this problem and the next, so perhaps they are not so difficult.

85. (*) Let

\[
S = \pm\{1, 4, 5, 6, 7, 9, 11, 13, 16, 21, 23, 28 \pmod{66}\}
\]

\[
T = \pm\{1, 4, 5, 6, 7, 9, 11, 14, 16, 17, 27, 29 \pmod{66}\}.
\]

Then \(p(S, n) = p(T, n)\) for all \(n \geq 1\) except \(n = 13\) (!).

86. [1.5] Prove the following identities by interpreting the coefficients in terms of partitions.

\[
\prod_{i \geq 1} \frac{1}{1 - qx^i} = \sum_{k \geq 0} \frac{x^k q^k}{(1 - x)(1 - x^2) \cdots (1 - x^k)}
\]

\[
\prod_{i \geq 1} \frac{1}{1 - qx^i} = \sum_{k \geq 0} \frac{x^k q^k}{(1 - x) \cdots (1 - x^k)(1 - qx) \cdots (1 - qx^k)}
\]

\[
\prod_{i \geq 1} (1 + qx^i) = \sum_{k \geq 0} \frac{x^{k+1}}{\binom{k+1}{2}} q^k
\]

\[
\prod_{i \geq 1} (1 + qx^{2i-1}) = \sum_{k \geq 0} \frac{x^k q^k}{(1 - x^2)(1 - x^4) \cdots (1 - x^{2k})}.
\]

87. [3] Show that

\[
\sum_{n=-\infty}^{\infty} x^n q^{n^2} = \prod_{k \geq 1} (1 - q^{2k})(1 + xq^{2k-1})(1 + x^{-1}q^{2k-1}).
\]

This famous result is *Jacobi’s triple product identity.*
88. [3] Let \(f(n) \) be the number of partitions of \(2n \) whose Ferrers diagram can be covered by \(n \) edges, each connecting two adjacent dots. For instance, \((4, 3, 3, 3, 1)\) can be covered as follows:

\[
\begin{array}{cccc}
\hline
& & & \\
\hline
& & & \\
& & & \\
& & & \\
& & & \\
\hline
\end{array}
\]

Then \(f(n) \) is equal to the number of ordered pairs \((\lambda, \mu)\) of partitions satisfying \(|\lambda| + |\mu| = n\).

89. (*) Given a partition \(\lambda \) and \(u \in \lambda \), let \(a(u) \) (called the arm length of \(u \)) denote the number of squares directly to the right of \(u \) (in the diagram of \(\lambda \)), counting \(\lambda \) itself exactly once. Similarly let \(l(u) \) (called the leg length of \(u \)) denote the number of squares directly below \(u \), counting \(u \) itself once. Thus if \(u = (i, j) \) then \(a(u) = \lambda_i - j + 1 \) and \(l(u) = \lambda'_j - i + 1 \). Define

\[
\gamma(\lambda) = \# \{ u \in \lambda : a(u) - l(u) = 0 \text{ or } 1 \}.
\]

Then

\[
\sum_{\lambda \vdash n} q^{\gamma(\lambda)} = \sum_{\lambda \vdash n} q^{\ell(\lambda)},
\]

where \(\ell(\lambda) \) denotes the length (number of parts) of \(\lambda \).

90. [2.5] If \(0 \leq k < \lfloor n/2 \rfloor \), then \(\binom{n}{k} \leq \binom{n}{k+1} \).

NOTE. To prove an inequality \(a \leq b \) combinatorially, find sets \(A, B \) with \(\#A = a \), \(\#B = b \), and either an injection (one-to-one map) \(f : A \to B \) or a surjection (onto map) \(g : B \to A \).

91. [2.5] Let \(1 \leq k \leq n - 1 \). Then \(\binom{n}{k}^2 \geq \binom{n}{k-1} \binom{n}{k+1} \). Note that this result is even stronger than Problem 90 above (assuming \(\binom{n}{k} = \binom{n}{n-k} \)) [why?].

92. [1] Let \(p(j, k, n) \) denote the number of partitions of \(n \) with at most \(j \) parts and with largest part at most \(k \). Then \(p(j, k, n) = p(j, k, jk - n) \).
\[\sum_{n=0}^{jk} p(j, k, n)q^n = \binom{j+k}{j}, \]

where \(\binom{m}{i} \) denotes the \emph{q-binomial coefficient}:

\[\binom{m}{i} = \frac{(1 - q^m)(1 - q^{m-1}) \cdots (1 - q^{m-i+1})}{(1 - q^i)(1 - q^{i-1}) \cdots (1 - q)}. \]

93. [3] Continuing the previous problem, if \(n < \frac{jk}{2} \) then \(p(j, k, n) \leq p(j, k, n+1) \).

\textbf{NOTE.} A (difficult) combinatorial proof is known. What is really wanted, however, is an injection \(f : A_n \to A_{n+1} \), where \(A_m \) is the set of partitions counted by \(p(j, k, m) \), such that for all \(\lambda \in A_n \), \(f(\lambda) \) is obtained from \(\lambda \) by adding 1 to a single part of \(\lambda \). It is known that such an injection \(f \) exists, but no explicit description of \(f \) is known.

94. [1] Let \(\bar{p}(k, n) \) denote the number of partitions of \(n \) into distinct parts, with largest part at most \(k \). Then

\[\bar{p}(k, n) = \bar{p}(k, \left(\frac{k+1}{2} \right) - n). \]

\textbf{NOTE.} It is easy to see that

\[\sum_{n=0}^{\left(\frac{k+1}{2} \right)} \bar{p}(k, n)q^n = (1 + q)(1 + q^2) \cdots (1 + q^k). \]

95. (*) Continuing the previous problem, if \(n < \frac{1}{2} \left(\frac{k+1}{2} \right) \) then \(\bar{p}(k, n) \leq \bar{p}(k, n+1) \).

\textbf{NOTE.} As in Problem 93 it would be best to give an injection \(g : B_n \to B_{n+1} \), where \(B_m \) is the set of partitions counted by \(\bar{p}(k, m) \), such that for all \(\lambda \in B_n \), \(f(\lambda) \) is obtained from \(\lambda \) by adding 1 to a single part of \(\lambda \). It is known that such an injection \(g \) exists, but no explicit description of \(g \) is known. However, unlike Problem 93, no explicit injection \(g : B_n \to B_{n+1} \) is known.
96. [2] A partition π of a set S is a collection of nonempty pairwise disjoint subsets (called the blocks of π) of S whose union is S. Let $B(n)$ denote the number of partitions of an n-element set. $B(n)$ is called a Bell number. For instance, $B(3) = 5$, corresponding to the partitions (written in an obvious shorthand notation) 1-2-3, 12-3, 13-2, 1-23, 123. The number of partitions of $[n]$ for which no block contains two consecutive integers is $B(n - 1)$.