Complete Lecture Notes (PDF 1.3MB)
- Regression Analysis and Prediction Risk
- Models and Methods
Chapter 1: Sub-Gaussian Random Variables (PDF)
- Gaussian tails and MGF
- Sub-Gaussian Random Variables and Chernoff Bounds
- Sub-Exponential Random Variables
- Maximal Inequalities
Chapter 2: Linear Regression Model (PDF)
- Fixed Design Linear Regression
- Least-Squares Estimation
- The Gaussian Sequence Model
- High-Dimensional Linear Regression
Chapter 3: Misspecified Linear Models (PDF)
- Oracle Inequalities
- Nonparametric Regression
Chapter 4: Matrix Estimation (PDF)
- Basic Facts About Matrices
- Multivariate Regression
- Covariance Matrix Estimation
- Principal Component Analysis
Chapter 5: Minimax Lower Bounds (PDF)
- Optimality in a Minmax Sense
- Reductions to Finite Hypothesis Testing
- Lower Bounds Based on Two Hypotheses
- Lower Bounds Based on Many Hypotheses
- Application to the Gaussian Sequence Model