Reading:

- Nise: Sec. 2.4 (pages 45–55)
- Class Handout: *Modeling Part 1: Energy and Power Flow in Linear Systems*
 Sec. 1 (Introduction)
 Sec. 4 (Electrical System Elements)

1 Modeling Electrical Systems (continued)

In Lecture 5 we examined the primitive electrical elements (capacitors inductors and resistors), and sources (voltage source and current source). We now look at how these elements behave when connected together in a circuit.

Interconnection Laws:

(a) Kirchhoff’s Current Law (KCL): The sum of currents flowing into(or out of) a junction is zero. In the figure below, at the circled junction we sum the currents into the junction to find

\[i_1 - i_2 - i_3 = 0 \]

We will define a junction as a *node*, and if there are \(n \) circuit branches attached to a node

\[\sum_{i=1}^{n} i_n = 0 \]

where we define the convention that positive current flow is into the node.

1copyright © D.Rowell 2008
Kirchoff’s Voltage Law (KVL): The sum of voltage drops around any closed loop in a circuit is zero. The assumed sign convention for the voltage drop on each element must be defined. Two clockwise loops are shown in the figure below. For loop (1)

\[v_R + v_C - V_s(t), \]

while for loop (2)

\[v_L - v_C(t) = 0. \]

Electrical Impedance:

Define the \textit{impedance} of an element or passive circuit as a \textit{transfer function} relating current \(I(s)\) to voltage \(V(s)\) at its terminals:

\[Z(s) = \frac{V(s)}{I(s)} \]

In addition we can define the \textit{admittance} \(Y(s)\) as the reciprocal of the impedance:

\[Y(s) = \frac{1}{Z(s)} = \frac{I(s)}{V(s)} \]

The Impedance of Passive Electrical Elements

6–2
(a) The Capacitor:

For the capacitor
\[i = C \frac{dv}{dt} \]

Taking the Laplace Transform:
\[I(s) = CsV(s) \]

or the admittance \(Y_C(s) = sC \).

\[Z_C(s) = \frac{V(s)}{I(s)} = \frac{1}{sC} \]

(b) The Inductor:

For the inductor
\[v = L \frac{di}{dt} \]

Taking the Laplace Transform:
\[V(s) = LsI(s) \]

or the admittance \(Y_L(s) = 1/sL \).

\[Z_L(s) = \frac{V(s)}{I(s)} = sL \]

(c) The Resistor:

For the resistor
\[v = Ri \]

Taking the Laplace transform
\[V(s) = RI(s) \]

or the admittance \(Y_R = 1/R \).

\[Z_R(s) = \frac{V(s)}{I(s)} = R \]

Impedance Nomenclature: We now introduce a graphical representation that will be used to denote systems in many energy domains.
The impedance is drawn as a graph *branch* between two *nodes*. Nodes represent junctions between the elements in the circuit. The arrow on the branch indicates both the assumed direction of voltage drop across the element, and the assumed current direction.

Example 1

The electrical circuit, consisting of a capacitor C, an inductor L, and a resistor R is shown below:

The impedance graph is shown on the right. The nodes on the graph represent *points of distinct voltage* in the circuit.

Impedance Connection Rules

(a) **Series connection:** Two or more elements are defined to be connected in series *if they share a common current*. For the two elements Z_1 and Z_2 in series below:

Using KCL at the junction between Z_1 and Z_2:

$$i_{Z_1} = i_{Z_2} = i$$

Using KVL around the loop: $v_{Z_1} + v_{Z_2} - V_s = 0$

$$V_s = iZ_1 + iZ_2$$

$$\frac{V(s)}{I(s)} = Z_{eq} = Z_1 + Z_2$$

In general with n impedances Z_i ($i = 1, \ldots, n$) in series:

$$Z_{eq} = \sum_{i=1}^{n} Z_i$$

6–4
Example 2

For the tree elements in series below:

\[Z_{eq} = Z_C + Z_L + Z_R = \frac{1}{sC} + sL + R \]

or expressing the impedance as a transfer function (a ratio of polynomials):

\[Z_{eq} = \frac{V(s)}{I(s)} = \frac{LCs^2 + RCs + 1}{Cs} \]

(b) **Parallel connection:** Two or more elements are defined to be connected in parallel if they *share a common voltage*. For the two elements \(Z_1 \) and \(Z_2 \) in parallel below:

Using KVL:

\[v_{Z_1} = v_{Z_2} = V_s \]

Using KCL at the node:

\[i_s = i_{Z_1} + i_{Z_2} \]

\[\frac{1}{Z_{eq}} = \frac{I}{V} = \frac{i_{Z_1} + i_{Z_2}}{V} \]

\[\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} \]

In general for \(n \) impedances \(Z_i \ (i = 1, \ldots, n) \) in parallel, the equivalent impedance is:

\[\frac{1}{Z_{eq}} = \sum_{i=1}^{n} \frac{1}{Z_i} \]

Alternatively, using admittances \(Y = 1/Z \)

\[y_{eq} = \frac{1}{Z_{eq}} = \sum_{i=1}^{n} Y_i. \]

Note: For \(N = 2 \) we can write

\[\frac{1}{Z_{eq}} = \frac{1}{Z_1} + \frac{1}{Z_2} = \frac{Z_1 + Z_2}{Z_1Z_2} \]

6–5
which leads to the very common representation

\[
Z_{eq} = \frac{Z_1 Z_2}{Z_1 + Z_2}
\]

Example 3

Find the impedance of a capacitor \(C\), and inductor \(L\) and a resistor \(R\) connected in parallel:

\[
\frac{1}{Z} = \frac{1}{1/sC} + \frac{1}{sL} + \frac{1}{R}
= sC + \frac{1}{sL} + \frac{1}{R}
= \frac{LCRs^2 + Ls + R}{RLs}
\]

\[
Z = \frac{V(s)}{I(s)} = \frac{RLs}{LCRs^2 + Ls + R}
\]

Example 4

Find the impedance of the following circuit, assuming we should include resistance and inductance of the coil:

\[
Z = Z_1 + Z_4 \parallel (Z_2 + Z_3)
= Z_1 + \frac{Z_4(Z_2 + Z_3)}{Z_4 + Z_2 + Z_3}
= R + \frac{(1/sC)(R_L + Ls)}{1/sC + R_L + Ls}
= R + \frac{R_L + Ls}{LCs^2 + R_LCs + 1}
\]
The Voltage Divider: Consider two impedances in series with voltage \(V \) across them:

\[
Z = \frac{V(s)}{I(s)} = \frac{RLC s^2 + (RR_L C + L)s + (R + R_L)}{L C s^2 + R_L C s + 1}
\]

\[
I(s) = \frac{V(s)}{Z_1 + Z_2}
\]

and

\[
V_{Z_2}(s) = I(s)Z_2 = \frac{Z_2}{Z_1 + Z_2}V(s).
\]

Similarly

\[
V_{Z_1}(s) = \frac{Z_1}{Z_1 + Z_2}V(s).
\]

The voltage divider relationship may be used to find the transfer function of many simple systems.

Example 5

Find the transfer function relating \(V_0 \) to \(V_s \) in the following circuit:

\[
V_0 = \frac{Z_2}{Z_1 + Z_2}V_s = \frac{1/sC}{R + 1/sC}V_s
\]

\[
H(s) = \frac{V_0(s)}{V(s)} = \frac{1}{RCs + 1}
\]

Example 6

Find the transfer function relating \(V_0 \) to \(V_s \) in the following circuit:

\[6-7\]
Reduce the impedance graph to a series connection of two elements

\[V_0 = \frac{Z_5}{Z_1 + Z_5} V_s \]

where

\[Z_5 = Z_4 \parallel (Z_2 + Z_3) = \frac{Z_4(Z_2 + Z_3)}{Z_4 + Z_2 + Z_3} = \frac{(1/sC)(R_L + L_s)}{1/sC + R_L + Ls} \]

Using the voltage divider relationship, the transfer function is

\[H(s) = \frac{V_0(s)}{V_s(s)} = \frac{Z_5}{Z_1 + Z_5} = \frac{R_{1L} + Ls}{R_1 + \frac{R_{1L} + Ls}{LCs^2 + R_1Cs + 1}} \]

\[H(s) = \frac{R_L + Ls}{R_1LCs^2 + (R_1R_LC + L)s + (R_1 + R_L)} \]

The Current Divider: Consider two impedances in parallel:
Using KCL at the top node (a),

\[I - i_1 - i_2 = 0 \quad \text{or} \quad i_1 + i_1 = I \]

But \(i_1 = V/Z_1 \), and \(i_2 = V/Z_2 \) so that

\[
\frac{V}{Z_1} + \frac{V}{Z_2} = I \quad \text{or} \quad V = \frac{1}{1/Z_1 + 1/Z_2} I
\]

\[
i_1 = \frac{V}{Z_1} = \frac{1/Z_1}{(1/Z_1 + 1/Z_2)} I = \frac{Y_1 I}{Y_1 + Y_2}
\]

Similarly

\[
i_2 = \frac{Y_2}{Y_1 + Y_2} I.
\]

The current divider may be used to find transfer functions for some simple circuits.

■ Example 7

Find the transfer function

\[H(s) = \frac{V_o(s)}{I(s)} \]

in the following circuit:

\[\text{Draw the system as an impedance graph:} \]

\[\text{\includegraphics{example7}} \]
Let \(Z_1 = 1/sC \), \(Z_2 = R \), and \(Z_3 = sL \). We will use \(V_o(s) = I_2(s)Z_3 \) (at node (b)), and find \(I_2(s) \) from the current division at node (a):

\[
I_2(s) = \frac{1}{Z_2 + Z_3} I(s) = \frac{1}{(1/Z_1)(Z_2 + Z_3) + 1} I(s)
\]

\[
= \frac{1}{Cs(R + Ls) + 1} I(s) = \frac{1}{LCs^2 + RCs + 1} I(s)
\]

\[
V_o(s) = I_2(s)Ls = \frac{Ls}{LCs^2 + RCs + 1} I(s)
\]

or

\[
H(s) = \frac{V_o(s)}{I(s)} = \frac{Ls}{LCs^2 + RCs + 1}
\]