The course will be based on the material presented in the lectures. There is no required textbook, although the following books are recommended.
Baruh, H. Analytical Dynamics. New York, NY: McGrawHill, 1998. ISBN: 9780073659770.
Ginsberg, J. H. Advanced Engineering Dynamics. 2nd ed. Cambridge, UK: Cambridge University Press, 1995. ISBN: 9780521470216.
Crandall, S. H., D. C. Karnopp, E. F. Kurtz, Jr., and D. C. PridmoreBrown. Dynamics of Mechanical and Electromechanical Systems. Malabar, FL: Krieger, 1982. ISBN: 9780898745290.
Moon, F. C. Applied Dynamics. New York, NY: Wiley, 1998. ISBN: 9780471138280.
Greenwood, D. T. Classical Dynamics. New York, NY: Dover Publications, 1997. ISBN: 9780486696904.
———. Principles of Dynamics. Upper Saddle River, NJ: PrenticeHall, 1987. ISBN: 9780137099818.
Suggested Readings
The following table lists sample readings, by lecture session, from Baruh's Analytical Dynamics.
LEC #  TOPICS  READINGS 

1  Course Overview Single Particle Dynamics: Linear and Angular Momentum Principles, Workenergy Principle 
1.4, 1.6, 1.7 
2  Examples of Single Particle Dynamics  
3  Examples of Single Particle Dynamics (cont.)  
4  Dynamics of Systems of Particles: Linear and Angular Momentum Principles, Workenergy Principle  3.13.4 
5  Dynamics of Systems of Particles (cont.): Examples Rigid Bodies: Degrees of Freedom 
6.1, 6.2, 7.1, 7.2, 1.5 
6  Translation and Rotation of Rigid Bodies Existence of Angular Velocity Vector 
2.4, 2.5 
7  Linear Superposition of Angular Velocities Angular Velocity in 2D Differentiation in Rotating Frames 
2.4, 2.5, 2.6 
8  Linear and Angular Momentum Principle for Rigid Bodies  8.1, 8.2 
9  Workenergy Principle for Rigid Bodies  8.9 
10  Examples for Lecture 8 Topics  
11  Examples for Lecture 9 Topics  
12  Gyroscopes: Euler Angles, Spinning Top, Poinsot Plane, Energy Ellipsoid Linear Stability of Stationary Gyroscope Motion 
10.4 
13  Generalized Coordinates, Constraints, Virtual Displacements  4.14.4 
15  Generalized Coordinates, Constraints, Virtual Displacements (cont.)  
16  Virtual Work, Generalized Force, Conservative Forces Examples 
4.4, 4.5 
17  D'Alembert's Principle Extended Hamilton's Principle Principle of Least Action 
4.7, 4.8 
18  Examples for Lecture 16 Topics Lagrange's Equation of Motion 
4.9 
19  Examples for Lecture 17 Topics  
20  Lagrange Multipliers, Determining Holonomic Constraint Forces, Lagrange's Equation for Nonholonomic Systems, Examples  4.10 
21  Stability of Conservative Systems Dirichlet's Theorem Example 

22  Linearized Equations of Motion Near Equilibria of Holonomic Systems  5.3 
23  Linearized Equations of Motion for Conservative Systems Stability Normal Modes Mode Shapes Natural Frequencies 
5.5 
24  Example for Lecture 23 Topics Orthogonality of Modes Shapes Principal Coordinates 
5.6 
25  Damped and Forced Vibrations Near Equilibria  5.7 
Other References
Goldstein, H. Classical Mechanics. Cambridge, MA: AddisonWesley, 1959.
Hartog, J. P. Den. Mechanics. New York: Dover, 1961.
Marion, J. B. Classical Dynamics of Particles and Systems. 2nd ed. New York: Academic Press, 1970.
Landau, L. D., and E. M. Lifshitz. Mechanics. 3rd ed. New York: Pergamon, 1976.
Williams, J. H., Jr. Fundamentals of Applied Dynamics. New York: John Wiley, 1996.
Hartog, J. P. Den. Mechanical Vibrations. New York: McGrawHill, 1956.
Meirovitch, L. Elements of Vibration Analysis. New York: McGrawHill, 1975.
———. Analytical Methods in Vibrations. New York: Macmillan, 1967.
Pippard, A. B. Response and Stability. New York: Cambridge University Press, 1985.
Nayfeh, A. H., and D.T. Mook. Nonlinear Oscillations. New York: WileyInterscience, 1979.
Strogatz, S. H. Nonlinear Dynamics and Chaos. Reading, MA: AddisonWesley, 1994.