Problem 5.13
This problem is from “Advanced Fluid Mechanics Problems” by A.H. Shapiro and A.A. Sonin

Two large compartments are separated by a wall in which there is a small nozzle, or hole, of radius R. The pressure p_1 in the left-hand compartment far from the nozzle is greater than the pressure p_2 in the right-hand compartment, and a steady volume flow Q takes place from (1) to (2).

The flow through the nozzle is an incompressible, high Reynolds number flow, typical of the ones rather loosely termed “inviscid”. However, as in all such flows, viscous forces are responsible for the phenomenon of flow separation which gives rise to a profound difference between the inflow and outflow regions of the nozzle flow field.

In compartment (1), on the inflow side, the flow is directed approximately radially inward toward the nozzle entrance until one gets close to the nozzle, and is essentially inviscid.

In compartment (2), however, the flow separates from the boundaries and emerges from the nozzle as a horizontal jet.

Inside compartment (2) viscous forces slow the jet and also cause it to become turbulent and to mix with the surrounding fluid, some of which is dragged along with the jet as the latter penetrates into the compartment and gradually slows down. The process whereby the jet drags some of the ambient fluid along with it is called “entrainment”, and gives rise in compartment (2) to a secondary bulk flow which is directed approximately radially inward toward the jet as sketched. The velocities associated with this secondary flow are relatively small, however, and the pressure in compartment (2) can be modeled as being approximately uniform.

(a) Consider a disc-shaped portion of the wall extending a radial distance r from the nozzle centerline. Using a control volume whose left side is a hemisphere of radius r, show that as $r/R \to \infty$, the x-component of external force required to hold this portion of the wall in place is given by

$$F = -(p_1 - p_2) \pi r^2 + \rho \frac{Q^2}{\pi R^2}$$
(b) Consider the integrals of (i) mass flux and (ii) x-direction momentum flux across a plane at station x to the right of the nozzle exit. Do these integrals grow, decrease, or remain constant as x increases? How do they compare with their values at the nozzle exit plane?

Gravity is to be neglected in this problem.