Stokes Second Problem ATP

Stokes apparently had many problems. This Second Problem is identical to the First Problem, except that we replace (2) with \(u(y = 0, t) = U \cos(\omega t) \) — the plate now oscillates. Note that we are interested only in the steady periodic solution: \(u \) behaves as \(\cos(\omega t + \Phi^u) \) in time, where the phase \(\Phi^u \) is independent of \(t \). (The initial condition (4) is thus irrelevant — it washes out.)

In the steady-periodic state the wall shear stress will be of the form

\[
\tau_W = CU^\alpha_1 \rho^\alpha_2 \mu^\alpha_3 \omega^\alpha_4 \cos(\omega t + \Phi^\tau),
\]

(1)

where the phase \(\Phi^\tau \) is independent of \(t \) and \(C \) is a non-dimensional constant. Find the exponents \(\alpha_1, \alpha_2, \alpha_3 \) and \(\alpha_4 \) by dimensional analysis.

Hint: (one approach): See Hint for Stokes’ First Problem; make good use of the steady-periodic form of the solution.
2.25 Advanced Fluid Mechanics
Fall 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.