Vehicle Road Load Requirement

\[P_b = \frac{1}{\eta_T} (F_R + F_D + F_a + F_C) S_V \]

\(P_b \) = Required engine brake power output
\(\eta_T \) = Transmission efficiency
\(F_R \) = Rolling frictional force \((= C_R M g \cos(\alpha) ; C_R \sim 0.015) \)
\(F_D \) = Aerodynamic drag force \((= 0.5 \rho_a S_v^2 C_D A_v ; C_D \sim 0.3) \)
\(F_a \) = Force to provide acceleration \((= M a) \)
\(F_C \) = Force for climbing incline \((= M g \sin(\alpha)) \); negative for downhill
\(S_v \) = Vehicle speed
Truck Road Load Requirement

- Power required (kW)
 - 0
 - 100
 - 200
 - 300
 - 400
 - 500
 - 600
 - 700
 - 800

- Hill climbing
- Aerodynamic drag
- Rolling friction

- 1/10 grade power required
- Level road power required

20,000 lb truck

Power required (kW) vs. MPH
Vehicle speed and engine rpm are related

\[S_v = \frac{N \pi d}{G.R.} \]

\(S_v \) = Vehicle speed
\(N \) = Engine revolution per second (= RPM / 60)
\(G.R. \) = Overall gear ratio
\(d \) = External diameter of tire

BMEP of engine

\[\text{BMEP} = \frac{P_b}{V_D N/\eta_R} \]

\(V_D \) = Engine displacement
\(\eta_R \) = 1 for two-stroke engine; 2 for four-stroke engine
Passenger car SI engine map

5th gear, 5% incline

4th gear, 5% incline

5th gear, flat road

4th gear, flat road

Relative efficiency = 1

Data from SAE 910676; 5th gear; 35 mph; 70 mph; 3rd gear; 70 mph; Saturn I4 engine