Welcome to ...

2.717J/MAS.857J
Optical Engineering
This class is about

- **Statistical Optics**
 - models of random optical fields, their propagation and statistical properties (*i.e.* coherence)
 - imaging methods based on statistical properties of light: coherence imaging, coherence tomography
- **Inverse Problems**
 - to what degree can a light source be determined by measurements of the light fields that the source generates?
 - how much information is “transmitted” through an imaging system? (related issues: what does _resolution_ really mean? what is the space-bandwidth product?)
The van Cittert-Zernike theorem

Galaxy, ~100 million light-years away

Very Large Array (VLA)

Radio waves

Cross-Correlation + Fourier transform

Image credits:
- hubble.nasa.gov
- www.nrao.edu

MIT 2.717J
wk1-b p-3
Optical coherence tomography

Image credits: www.lightlabimaging.com

Coronary artery

Intestinal polyps

Eosophagus

MIT 2.717J
wk1-b p-4
Inverse Radon transform
(aka Filtered Backprojection)

The hardware

The principle

Magnetic Resonance Imaging (MRI)

Image credits:
www.cis.rit.edu/htbooks/mri/
www.ge.com

MIT 2.717J
wk1-b p-5
You can take this class if

• You took one of the following classes at MIT
 – 2.996/2.997 during the academic years 97-98 and 99-00
 – 2.717 during fall ’00
 – 2.710 during fall ’01
 OR
• You have taken a class elsewhere that covered Geometrical Optics, Diffraction, and Fourier Optics

• Some background in probability & statistics is helpful but not necessary
Syllabus (summary)

- Review of Fourier Optics, probability & statistics 4 weeks
- Light statistics and theory of coherence 2 weeks
- The van Cittert-Zernicke theorem and applications of statistical optics to imaging 3 weeks
- Basic concepts of inverse problems (ill-posedness, regularization) and examples (Radon transform and its inversion) 2 weeks
- Information-theoretic characterization of imaging channels 2 weeks

Textbooks:
What you have to do

• 4 homeworks (1/week for the first 4 weeks)
• 3 Projects:
 – Project 1: a simple calculation of intensity statistics from a model in Goodman (~2 weeks, 1-page report)
 – Project 2: study one out of several topics in the application of coherence theory and the van Cittert-Zernicke theorem from Goodman (~4 weeks, lecture-style presentation)
 – Project 3: a more elaborate calculation of information capacity of imaging channels based on prior work by Barbastathis & Neifeld (~4 weeks, conference-style presentation)
• Alternative projects ok
• No quizzes or final exam
Administrative

• Broadcast list will be setup soon
• Instructor’s coordinates
 George Barbastathis
• *Please do not phone-call*
• Office hours TBA
• Class meets
 – Mondays 1-3pm (main coverage of the material)
 – Wednesdays 2-3pm (examples and discussion)
 – presentations only: Wednesdays 7pm-??, pizza served
The 4F system

\[g_1(x, y) \]

object plane

\[G_1 \left(\frac{x''}{\lambda f_1}, \frac{y''}{\lambda f_1} \right) \]

Fourier plane

\[g_1 \left(-\frac{f_2}{f_1} x', -\frac{f_1}{f_2} y' \right) \]

Image plane
The 4F system

\[G_1(u, v) \]

\[u = \frac{\sin \theta_x}{\lambda} \]

\[v = \frac{\sin \theta_y}{\lambda} \]

\[g_1(x, y) \]

object plane

\[G_1 \left(\frac{x''}{\lambda f_1}, \frac{y''}{\lambda f_1} \right) \]

Fourier plane

\[g_1 \left(-\frac{f_1}{f_2} x', -\frac{f_1}{f_2} y' \right) \]

Image plane
The 4F system with FP aperture

\[G_1(u, v) \times \text{circ} \left(\frac{r''}{R} \right) \]

Object plane:
\[g_1(x, y) \]

Fourier plane: aperture-limited
\[(g_1 * h) \left(-\frac{f_1}{f_2} x', -\frac{f_1}{f_2} y' \right) \]

Image plane: blurred (i.e. low-pass filtered)

MIT 2.717J
wk1-b p-12
The 4F system with FP aperture

Transfer function: circular aperture
\[\text{circ}\left(\frac{r''}{R}\right) \]

Impulse response: Airy function
\[\text{jinc}\left(\frac{r'R}{\lambda f_2}\right) \]
Coherent vs incoherent imaging
Coherent vs incoherent imaging

Coherent impulse response
(field in \Rightarrow field out)

$h(x, y)$

Coherent transfer function
(FT of field in \Rightarrow FT of field out)

$H(u, v) = \text{FT}\{h(x, y)\}$

Incoherent impulse response
(intensity in \Rightarrow intensity out)

$\tilde{h}(x, y) = |h(x, y)|^2$

Incoherent transfer function
(FT of intensity in \Rightarrow FT of intensity out)

$\tilde{H}(u, v) = \text{FT}\{\tilde{h}(x, y)\} = H(u, v) \otimes H(u, v)$

$|\tilde{H}(u, v)|$: Modulation Transfer Function (MTF)

$\tilde{H}(u, v)$: Optical Transfer Function (OTF)
Coherent vs incoherent imaging

Coherent illumination

Incoherent illumination
Aberrations: geometrical

- Origin of aberrations: nonlinearity of Snell’s law \(n \sin \theta = \text{const.} \), whereas linear relationship would have been \(n \theta = \text{const.} \).
- Aberrations cause practical systems to perform \textit{worse} than diffraction-limited.
- Aberrations are best dealt with using optical design software (Code V, Oslo, Zemax); optimized systems usually resolve \(\sim 3-5\lambda \) (~1.5-2.5\,\mu m in the visible)
Aberrations: wave

Aberration-free impulse response \(h_{\text{diffraction}}(x, y) \)

Aberrations introduce additional phase delay to the impulse response

\[
\tilde{h}_{\text{aberrated}}(x, y) = h_{\text{diffraction}}(x, y) e^{i\phi_{\text{aberration}}(x, y)}
\]

Effect of aberrations on the MTF

MIT 2.717J
wk1-b p-18