1 Review: Sound design process (Farnell 2010)

1. Requirements analysis

2. Research (subject of today’s class)

3. Model making (subject of today’s class)

4. Method selection

5. Implementation

2 Model of steam train drive-by

- Based on our requirements analysis from some class meetings ago:
 - Sound sources: Engine, whistle, rail sounds, warning bell
 - Acoustic effects: Doppler, HF absorption, inverse square/distance law, panning

- Now let’s interconnect these

- What does the geometry of the scene look like?

- Parameterization: What are meaningful parameters that the user should be able to set?

- Let’s assign individual subtasks to different groups (cf., table 1)
3 Group work: Steam-train drive-by specs

For both, the sound source and the acoustic effect assigned to your group:

- Which abstractions are required? Keep things generic, so that elements can be used for other drive-by fly-by examples!
- Specify creation arguments, inlets and outlets

4 Class discussion: What the final patch will look like

- Specification of all abstractions, inlets, outlets, creation arguments

References and further reading
