A Simple Approximation

1. Instead of choosing $F(\psi)$ so $q(\psi)$ is the same everywhere, we choose a simpler $F(\psi)$ so that only $q(0)$ and $q(a)$ remain the same (as β_t increases).

2. Choose $dp/d\psi = \text{const}, dF^2/d\psi = \text{const}$. This is the same model we have already investigated.

3. The model has only two free parameters: $A, C \rightarrow \beta_t, q_*$.

4. Thus, as β_t increases, there is only one degree of freedom, q_*, remaining.

5. Therefore, we cannot adjust q_* so that both q_0 and q_a remain fixed: this would be an overdetermined system.

6. We make an ultra simple approximation and choose q_* so that only q_a remains fixed. This prevents the formation of a separatrix which requires $q_a \rightarrow \infty$.

HBT Equilibrium

\[\mu_0 \rho = \beta_t B_0^2 \left(1 - \rho^2\right) \left[1 - \nu \rho \cos \theta\right] \]

\[B_\theta = \frac{\varepsilon B_0}{q_*} \left[\rho + \nu \frac{\rho^2}{2} \left(3\rho^2 - 1\right) \cos \theta \right] \]

\[\hat{B}_\theta = \frac{\varepsilon B_0}{q_*} \left[\frac{l}{\rho} + \nu \frac{1}{2} \left(1 + \frac{1}{\rho^2}\right) \cos \theta \right] \]

\[q_a = \frac{q_*}{\left(1-v^2\right)^{1/2}} \]

\[\nu = \frac{\beta_t q_*^2}{\varepsilon} \]

\[\rho = r/a \]

1. HBT: Express all quantities in terms of $\beta_t, q_* - 1/I$

2. FCT: Express all quantities in terms of β_t, q_a (held fixed). Examine the behavior as β_t increases. Are there any equilibrium limits?
Procedure

1. Define \(\nu_\ast = \frac{\beta_t q_a^2}{\epsilon} \) \(\propto \beta_t \) since \(q_a \) is held fixed in the FCT.

2. \(\nu_\ast \) is the heating parameter: as \(\beta_t \) increases, \(\nu_\ast \) increases.

3. For the HBT: \(\nu = \frac{\beta_t q_a^2}{\epsilon} \) \(\propto \beta_t \) for fixed \(I \).

4. \(\nu \) is the heating parameter for fixed \(I \): as \(\beta_t \) increases, \(\nu \) increases.

Relation between \(\nu \) and \(\nu_\ast \)

1. \(\nu = \frac{\beta_t q_a^2}{\epsilon} = \frac{\beta_t q_a^2}{q_a^2} = \nu_\ast (1 - \nu^2) \)

2. \(\nu^2 + \frac{\nu}{\nu_\ast} - 1 = 0 \)

\[
\nu = \frac{2\nu_\ast}{(1 + 4\nu_\ast^2)^{1/2} + 1}
\]

Compute the Physical Quantities in Terms of \(\nu_\ast \) and Compare with the HBT

1. \(I \propto 1/q_\ast \)

 a. HBT: \(\frac{1}{q_\ast} = \) const. fixed \(I \)

 b. FCT: \(\frac{1}{q_\ast} = \frac{1}{q_a} \left(\frac{1}{1 - \nu^2} \right)^{1/2} = \frac{1}{q_a} \left(\frac{\nu_\ast}{\nu} \right)^{1/2} \)

 \[
 \frac{1}{q_\ast} = \frac{1}{q_a} \left[\frac{1 + (1 + 4\nu_\ast^2)^{1/2}}{2} \right]^{1/2}
 \]

2. \(B_v \)

 a. HBT: \(B_v = \frac{\mu_0 I}{4\pi R_0} \beta_p = \frac{\mu_0 I}{4\pi R_0} \frac{\epsilon B_0}{q_\ast} \frac{\epsilon B_0}{2} = \frac{\epsilon B_0}{q_\ast} \nu \)

 b. FCT: \(B_v = \frac{\epsilon B_0}{2} \frac{\nu}{q_\ast} = \frac{\epsilon B_0}{2} \frac{1}{q_a} \left[\frac{1 + (1 + 4\nu_\ast^2)^{1/2}}{2} \right]^{1/2} \frac{2\nu_\ast}{1 + (1 + 4\nu_\ast^2)^{1/2}} \)
\[B_\nu = \frac{\varepsilon B_0}{2} \frac{v_*}{q_\beta} \left[\frac{2}{1 + (1 + 4v_*^2)^{1/2}} \right]^{1/2} \]

3. \(\rho_\nu \)
 a. HBT: \(\rho_\nu = \frac{1}{\nu} \left[1 + (1 - \nu^2)^{1/2} \right] \)
 b. FCT: \(\rho_\nu = \frac{1 + (1 + 4\nu_*^2)^{1/2}}{2\nu_*} \left[1 + \left(\frac{2}{1 + (1 + 4\nu_*^2)^{1/2}} \right)^{1/2} \right] \)

4. Define the plasma evolution in \(\beta_t - q_* \) space as \(\beta_t \) increases
 a. HBT: \(\frac{\beta_t q_*^2}{\varepsilon} = \nu \)
 \[q_* = \text{const.} \]
 b. FCT: \(\frac{\beta_t q_*^2}{\varepsilon} = \nu_* \)
 \[(1) \]
 \[\frac{1}{q_*} = \frac{1}{q_\beta} \left[\frac{1 + (1 + 4\nu_*^2)^{1/2}}{2} \right]^{1/2} \]
 \[(2) \]
 c. Solve (2) for \(\nu_* \) and substitute into (1) to give \(\beta_t = F(q_*) \)
 \[\nu_*^2 = q_\beta^2 \left[\frac{q_*^2}{q_\beta^2} - 1 \right] \]
 \[\frac{\beta_t q_\beta^2}{\varepsilon} = \left[\frac{q_*^2}{q_\beta^2} \left(\frac{q_*^2}{q_\beta^2} - 1 \right) \right]^{1/2} \]
Plot the Results

1. \(I \propto \nu \)

As \(\nu \) increases, \(I \) increases. This helps to prevent the separatrix from moving onto the plasma surface since less vertical field is required to maintain toroidal force balance.
3. B_v

Less vertical field is required. The separatrix stays away from the plasma surface.

4. ρ_S

No equilibrium limit. The separatrix does not move onto the plasma surface.
Summary

1. General HBT: covers all permissible $\beta_t/\varepsilon, q_*$ space

2. HBT at fixed I: exhibits an equilibrium limit

3. FCT at fixed q_a: no equilibrium limit