Reading: Chapters 2 & 3 of Sigmar & Helander

1. Equilibration: Section 3.3 in the book considers collisions of test particles with a Maxwellian field particle distribution. The result in eq. (3.40) of the book involves collision frequencies, $\nu_{sb}^{ab}(v)$ and, $\nu_{\parallel}^{ab}(v)$ and it is not obvious that a Maxwellian will result for the test particles in equilibrium. Consider identical field and test particles, so that, $m_a = m_b$. Show that actually,

$$\frac{\nu_{sb}^{ab}(v)}{\nu_{\parallel}^{ab}(v)} = \frac{2v}{v_T^2}$$

You may find equations, 3.45-3.48 helpful for this. Now you can write the velocity magnitude part of the operator as,

$$C_v \equiv \frac{1}{2v^2} \frac{\partial}{\partial v} v^4 \nu_{\parallel}(v) \left(\frac{2v}{v_T} f + \frac{\partial f}{\partial v} \right)$$

This is now analogous to the 1D example we looked at in lecture, except for the magnitude of velocity, v, in a 3D velocity space. Show that for, $C_v \rightarrow 0$, the distribution goes to a Maxwellian, $f \rightarrow f_M$.

2. Fokker-Planck equation accuracy: Considering the Fokker-Planck equation as a Taylor series expansion, we could continue to higher order as follows,

$$\frac{\partial f}{\partial t} = -\frac{\partial}{\partial v} \cdot A f + \frac{\partial^2}{\partial v \partial v} : D f + \frac{\partial^3}{\partial v \partial v \partial v} : T f$$

where, T, is some rank 3 tensor. Make a simple scaling argument on the coefficients (assuming the small angle expansion) to show that the terms in T (and higher order terms) are order unity compared to the divergent, $\sim \ln \Lambda$, terms retained in the Fokker-Planck equation. Estimate from this the inherent error in the Fokker-Planck operator. You may find some helpful arguments in the book for this problem.

3. Collision Operator Properties: Prove conservation of mass, momentum, and energy first for the single species collision operator, and then for a 2 species system consisting of electrons (subscript, e), and a single species of ions (subscript, i).

4. H-Theorem: Prove the H-theorem as follows:

Show that the rate of change of entropy is given by,

$$\frac{dS}{dt} = -\frac{d}{dt} \int d^3v f \ln f = -\int d^3v \ln f C(f, f)$$
By appropriate manipulations (integration by parts, reversing dummy variables, etc.) work this into the expression,

\[
\frac{dS}{dt} = \frac{1}{2} \Gamma \int d^3v d^3v' f(v) f(v') \left(\frac{\partial}{\partial v} \ln f - \frac{\partial}{\partial v'} \ln f' \right) \cdot \mathbf{U} \cdot \left(\frac{\partial}{\partial v} \ln f - \frac{\partial}{\partial v'} \ln f' \right)
\]

where, \(f' = f(v') \).

Show that, \(c \cdot \mathbf{U} \cdot c = |\mathbf{u} \times c|^2 / u^3 > 0 \), for any vector, \(c \). It now follows that,

\[
\frac{dS}{dt} \geq 0
\]

Why?

\(dS/dt = 0 \) if and only if, \(\mathbf{u} \times c = 0 \), and this must hold for all, \(v \) and \(v' \). Show then that this implies,

\[
(v - v') \times \left(\frac{\partial}{\partial v} \ln f - \frac{\partial}{\partial v'} \ln f' \right) = 0
\]

and that this implies that \(f \) must be Maxwellian, \(f = \text{const.} \exp \left(- (v - V)^2 / v_T^2 \right) \). Here, \(V \), is some constant, fluid, velocity.

5. **Positivity**: Show that, \(f > 0 \), at \(t = 0 \), implies, \(f > 0 \), for all times.