Massachusetts Institute of Technology
22.68J/2.64J
Superconducting Magnets

April 10, 2003

• Lecture #7 – Magnetic Instabilities
 ➢ Flux Flow; Bean’s Critical State Model
 ➢ Magnetization; Flux Jumping
Magnetic Instabilities

- Derive from dissipative nature of flux motion in Type II superconductors
- Flux Flow → Flux Flow Resistivity
 - Key to understanding dissipation, local heating, and nature of magnetic instability
 - Requires understanding of the concept of the "critical state"
 - Leads to understanding of magnetization and hysteresis losses in changing magnetic fields
Measured Flux Penetration in a Type II Superconductor
Flux Enters in Quantized Vortices
Technical Type II Superconductors Display a Magnetic Hysteresis

The area under the magnetization loop is proportional to the dissipated energy per cycle, given by:

$$\text{Area} \propto \Delta B \Delta J_c d_{\text{eff}}$$
Measured Flux Jumps in a Magnetization Loop

![Graph depicting measured flux jumps in a magnetization loop.](image)
Fine Filaments in Nb$_3$Sn

Strand
(0.81 mm diameter)

Sub-element Bundle

CICC
(50 mm x 50mm)

Superconducting Filament
(~3 μm diameter)
Relevant Superconducting Wires are Complex Composites

Typical SSC Nb-47wt.%Ti strand (OST manufacture).

Typical reacted ITER Nb$_3$Sn strand (IGC manufacture).
Flux Jump Stability of High Temperature Superconductors

<table>
<thead>
<tr>
<th>T [K]</th>
<th>I_c [A]</th>
<th>J_c [MA/m2]</th>
<th>C_s^* [kJ/m3K]</th>
<th>a_c [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>228</td>
<td>1932</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>10</td>
<td>217</td>
<td>1839</td>
<td>7.7</td>
<td>0.7</td>
</tr>
<tr>
<td>20</td>
<td>194</td>
<td>1644</td>
<td>68.5</td>
<td>2.4</td>
</tr>
<tr>
<td>30</td>
<td>163</td>
<td>1381</td>
<td>240</td>
<td>5.5</td>
</tr>
<tr>
<td>40</td>
<td>135</td>
<td>1144</td>
<td>534</td>
<td>9.8</td>
</tr>
<tr>
<td>50</td>
<td>108</td>
<td>915</td>
<td>881</td>
<td>16</td>
</tr>
<tr>
<td>60</td>
<td>80</td>
<td>678</td>
<td>1219</td>
<td>25</td>
</tr>
<tr>
<td>70</td>
<td>53</td>
<td>449</td>
<td>1540</td>
<td>43</td>
</tr>
<tr>
<td>80</td>
<td>24</td>
<td>203</td>
<td>1825</td>
<td>103</td>
</tr>
</tbody>
</table>

* Copper heat capacity.
AC Losses

Twisting the superconducting filaments in the composite wire is necessary to electrodynamically decouple them.

Twisting filaments also necessary to reduce coupling losses

Power dissipation $\propto (\text{Twist Pitch})^2$

Hysteresis losses
\propto filament diameter ($\sim 1 \mu\text{m}$)

Hysteresis losses
\propto strand diameter ($\sim 1 \text{ mm}$)
HTS Tape (BSCCO)