Electric current I

- Consider a region in which there is a flow of charges:
 - E.g. cylindrical conductor

- We define a current:
 the charge/unit time flowing through a certain surface

\[I = \frac{dQ}{dt} \]

- Units:
 - cgs: esu/s
 - SI: C/s=ampere (A)
 - Conversion: 1 A = 2.998 x 10^9 esu/s
Current density J

- Number density: $n = \# \text{charges} / \text{unit volume}$
- Velocity of each charge: u

![Diagram of current flow through an area](image)

- Current flowing through area A: $I = \Delta Q / \Delta t$
 - Where $\Delta Q = q \times \text{number of charges in the prism}$
 \[I = \frac{\Delta Q}{\Delta t} = \frac{q \Delta N}{\Delta t} = \frac{q n V_{\text{prism}}}{\Delta t} = \frac{q n \cos \theta u \Delta t}{\Delta t} = q n u \cdot \hat{A} = \vec{J} \cdot \hat{A} \]
- Where we defined the current density J as: $\vec{J} \equiv q n u \equiv \rho \vec{u}$

More realistic case...

- We made a number of unrealistic assumptions:
 - only 1 kind of charge carriers: we could have several, e.g.: + and - ions
 - u assumed to be the same for all particles: unrealistic!
 - regular surface with J constant on it
- Multiple charge carriers: $\vec{J} \equiv \sum_k q_k n_k \vec{u}_k = \sum_k \rho_k \vec{u}_k$
 - E.g.: solution with different kind of ions
 - NB: + ion with velocity u_k is equivalent to - ion with velocity $-u_k$
- Velocity:
 - Not all charges have the same velocity \rightarrow average velocity $\langle \vec{u} \rangle = \frac{1}{N} \sum_i \langle \vec{u}_i \rangle$, $\vec{J} \equiv \sum_k q_k n_k \langle \vec{u}_k \rangle = \sum_k \rho_k \langle \vec{u}_k \rangle$
- Arbitrary surface S, arbitrary \vec{J}: $I = \int_S \vec{J} \cdot d\vec{A}$
Non standard currents

- We usually think of currents as electrons moving inside a conductor
 - This is only one of the many examples!

- Other kinds of currents
 - Ions in solution such as Salt (NaCl) in water (Demo F5)

![Diagram of Na+ and Cl- ions]

The continuity equation

- A current I flows through the closed surface S:
 - Some charge enters
 - Some charge exits

- What happens to the charge after it enters?
 - Piles up inside
 - Leaves the surface $\int_S \vec{J} \cdot d\vec{A} = -\frac{\partial Q_{\text{inside}}}{\partial t}$
 - NB: - because dA points outside the surface

- Apply Gauss's theorem and obtain continuity equation:

\[
\begin{align*}
\int_S \vec{J} \cdot d\vec{A} &= \int_V \nabla \cdot \vec{J} dV \\
-\frac{\partial}{\partial t} Q_{\text{inside}} &= -\frac{\partial}{\partial t} \int_V \rho dV \\
\Rightarrow \int_V \left(\nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho \right) dV &= 0 \Rightarrow \nabla \cdot \vec{J} + \frac{\partial}{\partial t} \rho = 0
\end{align*}
\]
Thoughts on continuity equation

- **Continuity equation:**
 \[\nabla \cdot \mathbf{J} + \frac{\partial}{\partial t} \rho = 0 \]

- **What does it teach us?**
 - Conservation of electric charges in presence of currents
 - For steady currents:
 - no accumulation of charges inside the surface: \(\frac{d\rho}{dt}=0 \)

 \[\nabla \cdot \mathbf{J} = 0 \]

Microscopic Ohm’s law

- Electric fields cause charges to move
- Experimentally, it was observed by Ohm that
 \[\mathbf{J} = \sigma \mathbf{E} \]

- Microscopic version of Ohm’s law:
 - It reflects the proportionality between \(\mathbf{E} \) and \(\mathbf{J} \) in each point
 - Proportionality constant: **conductivity** \(\sigma \)
Macroscopic Ohm’s law

- Current is flowing in a uniform material of length L in uniform electric field $\mathbf{E} \parallel L$

- Potential difference between two ends: $V = EL$
- Ohm’s law $J = \sigma E$ holds in every point:

\[
J = \sigma E \Rightarrow \frac{I}{A} = \sigma \frac{V}{L} \Rightarrow \frac{V}{I} = R
\]

where

\[
R = \frac{L}{\sigma A}
\]

Resistance R

- Proportionality constant between V and R in Ohm’s law

\[
R = \frac{L}{\sigma A} = \frac{\rho L}{A}
\]

- Units: $[V] = [R][I]$
 - SI: Ohm (Ω) = V/A
 - cgs: s/cm

- Dependence on the geometry:
 - Inversely proportional to A and proportional to L

- Dependence on the property of the material:
 - Inversely proportional to conductivity
Resistivity

- Resistivity $\rho = 1/\sigma$
 - Describes how fast electrons can travel in the material
 - Units: in SI: $\Omega \cdot m$; in cgs: s

<table>
<thead>
<tr>
<th>Material</th>
<th>Resistivity (Ω·m)</th>
<th>Resistivity (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silver</td>
<td>1.6×10^{-8}</td>
<td>1.8×10^{-17}</td>
</tr>
<tr>
<td>Copper</td>
<td>1.7×10^{-8}</td>
<td>1.9×10^{-17}</td>
</tr>
<tr>
<td>Gold</td>
<td>2.4×10^{-8}</td>
<td>2.6×10^{-17}</td>
</tr>
<tr>
<td>Iron</td>
<td>1.0×10^{-7}</td>
<td>1.1×10^{-16}</td>
</tr>
<tr>
<td>Sea water</td>
<td>0.2</td>
<td>2.2×10^{-10}</td>
</tr>
<tr>
<td>Polyethylene</td>
<td>2.0×10^{11}</td>
<td>220</td>
</tr>
<tr>
<td>Glass</td>
<td>$\sim 10^{12}$</td>
<td>$\sim 10^3$</td>
</tr>
<tr>
<td>Fused quartz</td>
<td>7.5×10^{17}</td>
<td>8.3×10^8</td>
</tr>
</tbody>
</table>

- Depends on chemistry of material, temperature,...
 - Demos F1 and F4

Resistivity vs. Temperature

- Does resistivity depend on T?
 - Demos F1 and F4

- Why?
 - Room temperature:
 - ρ depends upon collisional processes
 - when T increases \rightarrow more collisions \rightarrow ρ increases
 - Very low temperature:
 - Mean free path dominated by impurities or defects in the material \rightarrow \sim constant with temperature.
 - With sufficient purity, some metals become superconductors
Application:

Resistivity of a spherical shell

- 2 concentric spheres; material in between has resistivity \(\rho \)
- Difference in potential \(V \rightarrow \) current
 - \(\phi_{\text{inner}} = V; \phi_{\text{outer}} = 0 \)

Q: what is the resistance \(R \)?

- Microscopic Ohm will hold: \(J = \sigma E \)
- Spherical symmetry \(\rightarrow \) spherical potential:
 \[\phi(r) = A + \frac{B}{r} \]
- Boundary conditions: \(\phi(a) = V \) and \(\phi(b) = 0 \)
 \[\phi(r) = V \left(\frac{ab}{b-a} \frac{1}{r} - \frac{a}{b-a} \right) \]

\[E = -\nabla(\phi): \quad \vec{E}(r) = V \frac{ab}{b-a} \frac{1}{r^2} \Rightarrow J = \sigma V \frac{ab}{b-a} \frac{1}{r^2} \]

\[I = \int_{\text{Sphere}} \vec{J} \cdot d\vec{A} = \int_{\text{Sphere}} \vec{J} \cdot \vec{A} = 4\pi \sigma V \frac{ab}{b-a} \Rightarrow R = \frac{V}{I} = \frac{V}{4\pi \sigma V} \frac{ab}{b-a} = \frac{b-a}{4\pi \sigma ab} \]

What if \(\sigma \) is not constant?

- Cylindrical wire made of 2 conductors with conductivity \(\sigma_1 \) and \(\sigma_2 \)

 \[I \]

 \[\sigma_1 \quad \sigma_2 \]

- What is the consequence?
 - Current flowing must be the same in the whole cylinder
 \[I = A\sigma_1 E_1 = A\sigma_2 E_2 \]
 - Electric fields are different in the 2 regions
 - \(E \) discontinuous \(\rightarrow \) surface layer \(\sigma_q \) at the boundary
 \[\sigma_q = \frac{E_{\text{surface}}}{4\pi} = \frac{E_2 - E_1}{4\pi} = \frac{I(\rho_2 - \rho_1)}{4\pi A} \]

When conductivity changes there is the possibility that some charge accumulates somewhere. This is necessary to maintain steady flow.
Thoughts on Ohm’s law

- Ohm’s law in microscopic formulation: \(\vec{J} = \sigma \vec{E} \)
 - In plain English:
 - A constant electric field creates a steady current: \(\vec{E} \propto \vec{v} \)
 - Does this make sense? \(\vec{F} = m\vec{a} \Rightarrow \vec{E} \propto \vec{a} \)
- Charges are moving in an effectively viscous medium
 - As sky diver in free fall: first accelerate, then reach constant \(v \)
 - Why? Charges are accelerated by \(E \) but then bump into nuclei and are scattered \(\rightarrow \) the average behavior is a uniform drift

\[\begin{align*}
E
\end{align*} \]

Motion of electrons in conductor

- \(N \) electrons are moving in a material immersed in \(\vec{E} \)
 - Two components contribute to the momentum:
 - Random collision velocity \(u_0 \): \(\vec{p}_{\text{Random}} = m\vec{u}_0 \)
 - Impulse due to electric field: \(\vec{p}_E = q\vec{E}t \)
 - The average momentum is:
 \[\langle p \rangle = m\langle u \rangle = \frac{1}{N} \sum_{i=1}^{N} (m\vec{u}_i + q\vec{E}t_i) = m \frac{1}{N} \sum_{i=1}^{N} \vec{u}_i + q\vec{E} \frac{1}{N} \sum_{i=1}^{N} t_i \]
 - For large \(N \): \(\sum_{i=1}^{N} \vec{u}_i \rightarrow 0 \) \(\rightarrow \) \(m\langle u \rangle = q\vec{E} \frac{1}{N} \sum_{i=1}^{N} t_i = q\vec{E}\tau \)
 - Where \(\tau = \frac{1}{N} \sum_{i=1}^{N} t_i \) is the average time between 2 collisions
 - Property of the material
Conductivity

- From this derivation we can read off the conductivity

\[
\begin{align*}
\bar{J} &= nq \langle \bar{u} \rangle \\
m \langle \bar{u} \rangle &= q\bar{E}\tau
\end{align*}
\Rightarrow \quad \bar{J} = nq \frac{q\bar{E}\tau}{m} = \sigma \bar{E} \quad \Rightarrow \quad \sigma = \frac{nq^2\tau}{m}
\]

- For multiple carriers:

\[
\sigma = \sum_{i=1}^{N} n_i q_i^2 \tau_i \frac{1}{m_i}
\]