Quiz #4 preparations

- Quiz 4: Wed, 5/4, 10AM,
 - 1 sheet with formulae etc
 - No books, calculators
- Evening review: Tue, 5/3, 7PM
- Tutoring:
 - Angel Solis, Mon + Tue, 5/2, 5-7PM,

Transformer Action

- Transformer action \(\frac{\text{EMF}_S}{\text{EMF}_P} = \frac{N_S}{N_P} \)

Secondary

Primary

\(\Phi_B \sim B \)

\(B \sim I_1 \)

Def.: \(M_{12} = N_2 \frac{\Phi_B}{I_1} \)

What you need to know

- Transformers
 - Basic principle
 - Transformer in HVPS
 - Relationship between I,V,P on primary/secondary side
- Demos
 - Jacobs Ladder
 - Melting nail
Mutual Inductance

- Coupling is symmetric: $M_{12} = M_{21} = M$
- M depends only on Geometry and Material
- Mutual inductance gives strength of coupling between two coils (conductors):
 \[\text{EMF}_2 = -N_2 \frac{d\phi_B}{dt} = -M \frac{dI_1}{dt} \]
- M relates EMF_2 and I_1 (or EMF_1 and I_2)
- Units: $[M] = \text{V}/(\text{A/s}) = \text{V s}/\text{A} = \text{H} ('\text{Henry}')$

Example: Two Solenoids

- Q: How big is $M = N_2 \frac{\phi_B}{I_1}$?
- A: $M = \mu_0 N_1 N_2 A/l$

Demo: Two Coils

- Signal transmitted by varying B-Field
- Coupling depends on Geometry (angle, distance)

Self Inductance

- L is also measured in [H]
- L connects induced EMF and variation in current:
 \[\text{EMF} = -L \frac{dI}{dt} \]
- Remember Lenz’ Rule:
 Induced EMF will ‘act against’ change in current -> effective ‘inertia’
- Delay between current and voltage
What you need to know

- Inductance
 - Definition
 - Calculation for simple geometry
- Mutual Inductance
 - Definition
 - Calculation for simple geometry
 - Direction of induced EMF (depends only on dI/dt)
- Self Inductance
 - Definition
 - Calculation for simple geometry

RL Circuits

Kirchhoff's Rule: \(V_0 + \frac{\partial}{\partial t} = R \int \) \(\rightarrow V_0 = L \frac{dI}{dt} + R I \)

Q: What is \(I(t) \)?

RL Circuits

\[I(t) = \frac{V_0}{R} \left[1 - \exp\left(\frac{-t}{\tau} \right) \right] \]
\[V(t) = V_0 \exp\left(\frac{-t}{\tau} \right) \]

\(\tau = \frac{L}{R} \)

‘Back EMF’

- What happens if we move switch to position 2?
RL circuit

- L counteracts change in current both ways
 - Resists increase in I when connecting voltage source
 - Resists decrease in I when disconnecting voltage source
 - 'Back EMF'

- That’s what causes spark when switching off e.g. appliance, light

Energy Storage in Inductor

- Energy in Inductor
 - Start with Power \(P = V^2I = L \frac{dI}{dt} = \frac{dU}{dt} \)
 - \(\frac{dU}{L} = \frac{dI}{dt} \)
 - \(U = \frac{1}{2} LI^2 \)

- Where is the Energy stored?
 - Example: Solenoid (but true in general)
 - \(U/\text{Volume} = \frac{1}{2} B^2/\mu_0 \)

What you need to know

- Inductors
- \(I(t) \) in DC RL circuits
- Energy storage in inductors
- Practical use

RLC circuits

- Combine everything we know...
- Resonance Phenomena in RLC circuits
 - Resonance Phenomena known from mechanics (and engineering)
 - Great practical importance

Summary of Circuit Components

\[
\begin{align*}
\text{V} & : V(t) = V_0 \cos(\omega t) \\
\text{R} & : V_R = -IR \\
\text{L} & : V_L = -L \frac{dI}{dt} \\
\text{C} & : V_C = -Q/C = -1/C \int Idt
\end{align*}
\]

R,L,C in AC circuit

- AC circuit
 - \(I(t) = I_0 \sin(\omega t) \)
 - \(V(t) = V_0 \sin(\omega t + \phi) \)
 - \(\text{same } \omega! \)

- Relationship between V and I can be characterized by two quantities
 - Impedance \(Z = V_0/I_0 \)
 - Phase-shift \(\phi \)
AC circuit

\[I(t) = I_0 \sin(\omega t) \]
\[V(t) = V_0 \sin(\omega t + \phi) \]

Impedance \(Z = \frac{V_0}{I_0} \)
Phase-shift \(\phi \)

First: Look at the components

<table>
<thead>
<tr>
<th>Component</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor</td>
<td>(V = IR)</td>
</tr>
<tr>
<td>Capacitor</td>
<td>(V = \frac{Q}{C} = \frac{1}{C} \int I dt)</td>
</tr>
<tr>
<td>Inductor</td>
<td>(V = L \frac{dI}{dt})</td>
</tr>
</tbody>
</table>

\(Z = R \) \(\phi = 0 \)
\(Z = \frac{1}{(\omega C)} \) \(\phi = -\frac{\pi}{2} \)
\(Z = \omega L \) \(\phi = \frac{\pi}{2} \)

\(V \) and \(I \) in phase
\(V \) lags \(I \) by 90°
\(I \) lags \(V \) by 90°

RLC circuit

\[V(t) \sim L \frac{dQ}{dt} - IR - \frac{Q}{C} = 0 \]

\[L \frac{d^2Q}{dt^2} = -\frac{1}{C} Q - R \frac{dQ}{dt} + V \]

2nd order differential equation

Water
Spring Mass \(m \)

\(F_{ext} m \frac{d^2x}{dt^2} = -k x - f \frac{dx}{dt} + F_{ext} \)

Resonance

\(I_0 \)

\(I_{max} = \frac{V_0}{R} \)

\(\phi \)

\(\omega \)

\(\omega = \frac{1}{\sqrt{LC}} \)

Low Frequency
High Frequency
RLC circuit

\[V_0 \sin(\omega t) = I_0 \left[\frac{1}{\omega L} - \frac{1}{\omega C} \right] \cos(\omega t - \phi) + R \sin(\omega t - \phi) \]

Solution (requires two tricks):

\[I_0 = \frac{V_0}{\left(\frac{1}{\omega L} - \frac{1}{\omega C} \right)^2 + R^2}^{1/2} = \frac{V_0}{Z} \]

\[\tan(\phi) = \frac{\left(\frac{1}{\omega L} - \frac{1}{\omega C} \right)}{R} \]

\[\Rightarrow \text{For } \omega L = \frac{1}{\omega C}, \text{ } Z \text{ is minimal and } \phi = 0 \]

\[\text{i.e. } \omega_0 = \left(\frac{1}{LC} \right)^{1/2} \text{ Resonance Frequency} \]

Resonance

- Practical importance
 - ‘Tuning’ a radio or TV means adjusting the resonance frequency of a circuit to match the frequency of the carrier signal

LC-Circuit

- What happens if we open switch?

\[-L \frac{dI}{dt} - \frac{Q}{C} = 0 \]

\[L \frac{d^2Q}{dt^2} + \frac{Q}{C} = 0 \]

\[\frac{d^2x}{dt^2} + \omega_0^2 x = 0 \]

\[\text{Harmonic Oscillator!} \]

Energy in E-Field

\[\frac{1}{2} Q^2/C \]

\[\frac{1}{2} L I^2 \]

Potential Energy

Kinetic Energy

Oscillation

LC-Circuit

\[d^2Q/dt^2 + 1/(LC) Q = 0 \]

\[\omega_0^2 = 1/(LC) \]

\[d^2x/dt^2 + k/m x = 0 \]

\[\omega_0^2 = k/m \]

LC-Circuit

- Total energy \(U(t) \) is conserved:
 - \(Q(t) \sim \cos(\omega t) \)
 - \(dQ/dt \sim \sin(\omega t) \)
 - \(U_L \sim (dQ/dt)^2 \sim \sin^2 \)
 - \(U_C \sim Q(t)^2 \sim \cos^2 \)
 - \(\cos^2(\omega t) + \sin^2(\omega t) = 1 \)
Electromagnetic Oscillations

- In an LC circuit, we see oscillations:
 - Energy in E-Field
 - Energy in B-Field

- Q: Can we get oscillations without circuit?
- A: Yes!
 - Electromagnetic Waves

What you need to know

- RLC Circuits
- How to obtain diff. equ (but not solve it)
- Definition of impedance, phase shift
- Phaseshift for C,R,L AC circuits
- Impedance, phase shift at resonance
- Limiting behavior of RLC circuit with frequency
- LC, RLC analogy with mechanical systems
- LC oscillations: Frequency, role of E,B energy

Displacement Current

- Ampere’s Law broken – How can we fix it?

\[\mathbf{Q} = C \mathbf{V} \]

Displacement Current \(\mathbf{I_D} = \varepsilon_0 \frac{d\Phi_E}{dt} \)

Maxwell’s Equations

- Symmetry between E and B
 - although there are no magnetic monopoles
- Basis for radio, TV, electric motors, generators, electric power transmission, electric circuits etc
Maxwell’s Equations

\[
\oint_{\text{closed}} \mathbf{E} \cdot d\mathbf{A} = \frac{Q_{\text{inlet}}}{\varepsilon_0} \\
\oint_{\text{closed}} \mathbf{E} \cdot d\mathbf{l} = -\frac{\partial \Phi_B}{\partial t} \\
\oint_{\text{closed}} \mathbf{B} \cdot d\mathbf{A} = 0 \\
\oint_{\text{closed}} \mathbf{B} \cdot d\mathbf{l} = \mu_0 I_{\text{inlet}} + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}
\]

- M.E.’s predict electromagnetic waves, moving with speed of light
- Major triumph of science

What you need to know

- Displacement current
 - Definition
 - Calculation for simple geometry
 - It’s not a current
- Maxwell’s equations
 - Meaning in words

Reminder on waves

- Types of waves
 - Transverse
 - Longitudinal
 - compression/decompression

Reminder on waves

For a travelling wave (sound, water)
Q: What is actually moving?

-> Energy!
- Speed of propagation: \(v = \lambda \cdot f \)
- Wave equation:

\[
\frac{\partial^2 D(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 D(x,t)}{\partial t^2}
\]

Couples variation in time and space

Wave Equation

- Wave equation:

\[
\frac{\partial^2 D(x,t)}{\partial x^2} = \frac{1}{v^2} \frac{\partial^2 D(x,t)}{\partial t^2}
\]

Couples variation in time and space
- Speed of propagation: \(v = \lambda \cdot f \)
- We can derive a wave equation from Maxwell’s equations (NOT IN QUIZ)
Plane waves

- Example solution: Plane waves

\[E_y = E_0 \cos(kz - \omega t) \]
\[B_z = B_0 \cos(kz - \omega t) \]

with \(k = \frac{2\pi}{\lambda}, \omega = 2\pi f \) and \(f\lambda = c \).

E.M. Wave Summary

- \(\mathbf{E} \perp \mathbf{B} \) and perpendicular to direction of propagation
- Transverse waves
- Speed of propagation \(v = c = \frac{\lambda}{f} \)
- \(|E|/|B| = c \)
- E.M. waves travel without medium

What you need to know

- Waves
 - What is a wave?
 - Types of waves
 - Relationships between wavelength, frequency, wave speed
- E.M. waves
 - Properties
 - Connection to demos (speed, polarisation)
 - Relative direction of \(E, B, v \)

AMP Experiment

- Understand general idea/purpose
- Understand voltage dividers
- Understand need for negative feedback loop