Problem 1 (30 points) Entropy of a Surface Film

\(\gamma \) and \(C_A \) are given in terms of \(T \) and \(A \) so it is reasonable to choose \(T \) and \(A \) as the variables in which to expand the entropy.

\[
dS = \left(\frac{\partial S}{\partial T} \right)_A dT + \left(\frac{\partial S}{\partial A} \right)_T dA
\]

\[
C_A \equiv \left. \frac{dQ}{dt} \right|_A = T \left(\frac{\partial S}{\partial T} \right)_A \Rightarrow \left(\frac{\partial S}{\partial T} \right)_A = C_A = \frac{Nk_B}{T} + \frac{Nk_BT}{T_0^2}
\]

To find \((\partial S/\partial A)_T\) use a Maxwell Relation. You may either use the magic square or derive the required relation as follows.

\[
F \equiv U - TS
\]

\[
dF = -SdT + \gamma dA
\]

cross derivatives of the prefactors of the differentials are equal

\[
\left(\frac{\partial S}{\partial A} \right)_T = -\left(\frac{\partial \gamma}{\partial T} \right)_A = \frac{Nk_B}{A - bN}
\]
Substituting in these results gives

\[
dS = \left(\frac{N_k B}{T} + \frac{N_k B T}{T_0^2} \right) dT + \left(\frac{N_k B}{A - bN} \right) dA
\]

\[
S = N_k B \ln T + \frac{1}{2} N_k B \left(\frac{T}{T_0} \right)^2 + f(A)
\]

\[
\left(\frac{\partial S}{\partial A} \right)_T = f'(A) = \frac{N_k B}{A - bN} \Rightarrow f(A) = N_k B \ln(A - bN) + c
\]

\[
S(T, A) = N_k B \ln T + \frac{1}{2} N_k B \left(\frac{T}{T_0} \right)^2 + N_k B \ln(A - bN) + c
\]

[Note: One can make the arguments of the logs dimensionless by distributing part of the additive constant \(c \) among the various other terms.]

\[
S(T, A) = N_k B \ln(T/T_1) + \frac{1}{2} N_k B \left(\frac{T}{T_0} \right)^2 + N_k B \ln((A - bN)/A_1) + c'
\]
Problem 2 (40 points) Crystal Field Splitting

a)
\[Z_1 = 1 + 2 \exp[-\Delta/k_B T] \]
\[< \epsilon > = \sum_{\text{states}} \epsilon_{\text{state}} p(\text{state}) = \frac{2\Delta \exp[-\Delta/k_B T]}{1 + 2 \exp[-\Delta/k_B T]} = 2\Delta \frac{1}{\exp[\Delta/k_B T] + 2} \]
\[U(T, N) = N < \epsilon > = \frac{2\Delta N}{\exp[\Delta/k_B T] + 2} \]

b) At \(T = 0 \) only the non-degenerate ground state is occupied. \(S(T = 0, N) = k_B N \ln(1) = 0. \)

As \(T \to \infty \), all three states are equally probable. \(S(T, N) \to k_B N \ln(3). \)

c)
\[C_V = \left(\frac{\partial U}{\partial T} \right)_V = 2\Delta N \frac{d}{dT} \left(\frac{1}{\exp[\Delta/k_B T] + 2} \right) \]
\[= 2\Delta N \left(\frac{\Delta/k_B T^2}{\exp[\Delta/k_B T] + 2} \right) \frac{\exp[\Delta/k_B T]}{(\exp[\Delta/k_B T] + 2)^2} \]
\[= 2Nk_B \left(\frac{\Delta}{k_B T} \right)^2 \frac{\exp[\Delta/k_B T]}{(\exp[\Delta/k_B T] + 2)^2} \]

d)
\[F(T, N) = -k_B T \ln Z = -Nk_B T \ln Z_1 = -Nk_B T \ln(1 + 2 \exp[-\Delta/k_B T]) \]
\[P(T, N) = -\left(\frac{\partial F}{\partial V} \right)_T = -\left(\frac{\partial F}{\partial \Delta} \right)_T \frac{d\Delta}{dV} = \gamma \left(\frac{\Delta}{V} \right) \left(\frac{\partial F}{\partial \Delta} \right)_T \]
\[= -Nk_B T \gamma \left(\frac{\Delta}{V} \right) \frac{1}{Z_1} \left(\frac{-2}{k_B T} \right) \exp[-\Delta/k_B T] \]
\[= 2N \gamma \left(\frac{\Delta}{V} \right) \frac{\exp[-\Delta/k_B T]}{1 + 2 \exp[-\Delta/k_B T]} \]
\[= \left(\frac{\gamma}{V} \right) 2N \Delta \frac{1}{\exp[\Delta/k_B T] + 2} = \gamma \frac{U}{V} \]
Problem 3 (30 points) Heating a Shell

a) For the shell,

\[
P_{\text{in}} = 4\pi r^2 \sigma T_H^4
\]

\[
P_{\text{out}} = 4\pi R^2 \sigma T_S^4
\]

\[P_{\text{out}} = P_{\text{in}} \Rightarrow r^2 T_H^4 = R^2 T_S^4 \rightarrow T_S = T_H \sqrt{\frac{r}{R}}\]

b) \([e(\omega, T)]_{\text{heater}} = (1) \left(\frac{1}{4} \right) c u(\omega, T_H)\]

\[P_{\text{in}} = (4\pi r^2) \left(\frac{c}{4} \right) \int_0^{\omega_0} \left(\frac{k_B T_H}{\pi^2 c^3} \right) \omega^2 d\omega\]

\[= \frac{r^2 k_B T_H}{\pi c^2} \int_0^{\omega_0} \omega^2 d\omega = \frac{k_B \omega_0^3}{3\pi c^2} r^2 T_H\]

Note that the power is coming from the central object (not from the shell) and from its surface (not volume). Thus this result is proportional to \(r^2\).

c) \([e(\omega, T)]_{\text{shell}} = \alpha(\omega) \left(\frac{1}{4} \right) c u(\omega, T_S)\]

\[P_{\text{out}} = (4\pi R^2) \left(\frac{c}{4} \right) \int_0^{\omega_0} \left(\frac{k_B T_S}{\pi^2 c^3} \right) \omega^2 d\omega = \frac{k_B \omega_0^3}{3\pi c^2} R^2 T_S\]

\[P_{\text{out}} = P_{\text{in}} \Rightarrow T_S = T_H \left(\frac{r}{R} \right)^2\]

This is an example of a poor absorber being a poor emitter (Kirchoff’s law, on the information sheet). The shell does not absorb beyond \(\omega_0\), thus it does not radiate beyond \(\omega_0\).