1. Landau level for mass-less Dirac fermions

We have seen that the electron in the Graphene has a linear dispersion relation \(\epsilon(k) = v|k| \). Use the semi-classical approach to calculate the energy \(\epsilon_n \) of the \(n^{th} \) Landau level in the uniform magnetic field \(B \). Assume \(v = 1\text{eV} \times 1\text{Å}/\text{ℏ} \), find \(\epsilon_1 - \epsilon_0 \) in eV for a magnetic field of 30 Tesla. Can we see quantum Hall effect in Graphene at room temperature?

2. Hall conductance of electrons in a lattice

Consider a 2D spin-less non-interacting electron gas. The electron density is \(n \). A uniform magnetic field \(B = Bz \) is applied.

(a) Assume that the electrons have a dispersion \(\epsilon(k) = \frac{\hbar^2k^2}{2m} \). Use a classical approach to show that \(\rho_{xy} = +\frac{B}{\pi e}n \) and \(\rho_{xx} = 0 \), or \(\sigma_{xy} = -\frac{enB}{\pi} \) and \(\sigma_{xx} = 0 \). (Be careful about the signs and we assume the electron mean-free path to be \(l = \infty \).) Let \(S \) be the area enclosed by the Fermi surface. Show that

\[
\sigma_{xy} = -\frac{eSc}{4\pi^2B}
\]

The above formula is more general and works for an arbitrary dispersion \(\epsilon(k) \), as long as the Fermi surface forms a closed loop that encloses the occupied \(k \)-points.

(b) We like to apply the above classical result \(\sigma_{xy} = -\frac{eSc}{4\pi^2B} \) for electrons in square lattice with a lattice constant \(a \). The dispersion \(\epsilon(k) \) is given by

\[
\epsilon(k) = -2t[\cos(k_xa) + \cos(k_ya)]
\]

Find \(\sigma_{xy} \) as a function of electron density \(n \). (Hints: (a) The maximum density corresponds to a filled band. (b) \(\sigma_{xy} \) is known to be zero for a filled band. (c) \(\sigma_{xy} = -\frac{eSc}{4\pi^2B} \) is valid only if the Fermi surface forms a closed loop that encloses the occupied \(k \)-points. (d) For a nearly filled band, we may view the system as a system of holes.)

(c) (Optional) Guess how the above classical result should be modified if we include the quantum effect and impurity effect. Sketch the modified \(\sigma_{xy} \) as function of electron density \(n \) in the weak \(B \) field limit.

3. Diamagnetism – a simple way:

Consider a 2D spin-less non-interacting electron gas. The electron mass is \(m \) and the density is \(n \). Let \(E_{tot}(B) \) be the total ground state energy of the electrons.
(a) Find the values of $E_{tot}(B)$ when the magnetic field B is such that the filling fraction ν is an integer.

(b) Find the values of $E_n = E_{tot}(B_n)$ when the magnetic field B_n is such that the n^{th} Landau level is half filled. Show that $E_n = c_0 + c_1 B_n^2$ and find the values of c_0 and c_1.

(c) Assume at $T \neq 0$, $\langle E_{tot} \rangle = c_0 + c_1 B^2$, find the corresponding magnetic susceptibility χ.

4. Prob. 5 on page 319 of Kittle.

5. Prob. 6 on page 320 of Kittle.