2. Symmetries

2.1 Introduction
Importance of Symmetries

Symmetries and conservation laws are central to the development of the Standard Model of particle physics.

Noether’s theorem:
(informal) If a system has a continuous symmetry property, then there are corresponding properties whose values do not change with time.
(more sophisticated) To every differentiable symmetry generated by local action there corresponds a conserved current
Emmy Noether

1882-1935

Erlangen

Göttingen

Bryn Mawr

Princeton

This image is in the public domain.
Symmetries and Conservation Laws

<table>
<thead>
<tr>
<th>Symmetry</th>
<th>Conservation law</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation in time</td>
<td>Energy</td>
</tr>
<tr>
<td>Translation in space</td>
<td>Momentum</td>
</tr>
<tr>
<td>Rotation</td>
<td>Angular momentum</td>
</tr>
<tr>
<td>Gauge transformation</td>
<td>Charge</td>
</tr>
</tbody>
</table>

Noether’s Theorem: Symmetries \leftrightarrow Conservation laws
Symmetry Operations

Identity: there is an element \(I \) such that \(R_i I = R_i I = R_i \)

Closure: if \(R_i \) and \(R_j \) are in a set, then there exists \(R_k = R_i R_j \)

Inverse: for every element, there is an inverse \(R_i R_i^{-1} = I \)

Associativity: \(R_i (R_j R_i) = (R_i R_j) R_k \)

Abelian \(R_j R_i = R_i R_j \) and non-Abelian \(R_j R_i \neq R_i R_j \) groups