1 Problem 1

Proof. The lecture note 4 has shown that \(\{ \theta > 0 : M(\theta) < \exp(C\theta) \} \) is nonempty. Let

\[
\theta^* := \sup\{ \theta > 0 : M(\theta) < \exp(C\theta) \}
\]

If \(\theta^* = \infty \), which implies that for all \(\theta > 0 \), \(M(\theta) < \exp(C\theta) \) holds, we have

\[
\inf_{t>0} tI(C + \frac{1}{t}) = \inf_{t>0} \{ t(\theta - \log M(\theta)) + \theta \} = \infty = \theta^*
\]

Consider the case in which \(\theta^* \) is finite. According to the definition of \(I(C + \frac{1}{t}) \), we have

\[
I(C + \frac{1}{t}) \geq \theta^*(C + \frac{1}{t}) - \log M(\theta^*)
\]

\[
\Rightarrow \inf_{t>0} tI(C + \frac{1}{t}) \geq \inf_{t>0} t(\theta^*(C + \frac{1}{t}) - \log M(\theta^*))
\]

\[
= \inf_{t>0} t(\theta^*C - \log M(\theta^*)) + \theta^*
\]

\[
\geq \theta^*
\]

(1)

Next, we will establish the convexity of \(\log M(\theta) \) on \(\{ \theta \in \mathbb{R} : M(\theta) < \infty \} \). For two \(\theta_1, \theta_2 \in \{ \theta \in \mathbb{R} : M(\theta) < \infty \} \) and \(0 < \alpha < 1 \), Hölder’s inequality gives

\[
\mathbb{E}[\exp((\alpha \theta_1 + (1-\alpha) \theta_2)X)] \leq \mathbb{E}[\exp(\alpha \theta_1 X)]^{\frac{1}{\alpha}} \mathbb{E}[\exp((1-\alpha) \theta_1 X)]^{1-\alpha}
\]

Taking the log operations on both sides gives

\[
\log M(\alpha \theta_1 + (1 - \alpha) \theta_2) \leq \alpha \log M(\theta_1) + (1 - \alpha)M(\theta_2)
\]

By the convexity of \(\log M(\theta) \), we have

\[
(C + \frac{1}{t})\theta - \log M(\theta) \leq (C + \frac{1}{t})\theta - \theta^*C - \frac{\dot{M}(\theta^*)}{M(\theta^*)}(\theta - \theta^*)
\]

\[
= (C - \frac{\dot{M}(\theta^*)}{M(\theta^*)} + \frac{1}{t})(\theta - \theta^*) + \frac{\theta^*}{t}
\]

1
Thus, we have
\[
\inf_{t > 0} \sup_{\theta \in \mathbb{R}} \left[(C + \frac{1}{t})\theta - \log M(\theta) \right] \leq \inf_{t > 0} \sup_{\theta \in \mathbb{R}} \left[(C - \frac{\dot{M}(\theta^*)}{M(\theta^*)} + \frac{1}{t})(\theta - \theta^*) \right] + \theta^*
\]
(2)

Then we will establish the fact that \(\frac{\dot{M}(\theta^*)}{M(\theta^*)} \geq C\). If not, then there exists a sufficiently small \(h > 0\) such that
\[
\frac{\log M(\theta^* - h) - \log M(\theta^*)}{-h} < C
\]
which implies that
\[
\log M(\theta^* - h) > \log M(\theta^*) - Ch \\
\Rightarrow \log M(\theta^* - h) > C(\theta^* - h) \Rightarrow M(\theta^* - h) \geq \exp(C(\theta^* - h))
\]
which contradicts the definition of \(\theta^*\). By the facts that
\[
\inf_{t > 0} \sup_{\theta \in \mathbb{R}} \left[(C - \frac{\dot{M}(\theta^*)}{M(\theta^*)} + \frac{1}{t})(\theta - \theta^*) \right] \geq 0, \text{ (when } \theta = \theta^*)
\]
and \(\frac{\dot{M}(\theta^*)}{M(\theta^*)} \geq C\), we have that
\[
\inf_{t > 0} \sup_{\theta \in \mathbb{R}} \left[(C - \frac{\dot{M}(\theta^*)}{M(\theta^*)} + \frac{1}{t})(\theta - \theta^*) \right] = 0
\]
and the infimum is obtained at \(t^* > 0\) such that \(C + \frac{1}{t^*} - \frac{\dot{M}(\theta^*)}{M(\theta^*)} = 0\). From (2), we have
\[
\inf_{t > 0} \sup_{\theta \in \mathbb{R}} \left[(C + \frac{1}{t})\theta - \log M(\theta) \right] \leq \theta^* \\
\Rightarrow \inf_{t > 0} tI(C + \frac{1}{t}) \leq \theta^*
\]
(3)

From (1) and (3), we have the result \(\inf_{t > 0} tI(C + \frac{1}{t}) = \theta^*\).
\[\square\]
2 Problem 2 (Based on Tetsuya Kaji’s Solution)

(a). Let θ_0 be the one satisfying $I(a) = \theta_0 a - \log M(\theta_0)$ and δ be a small positive number. Following the proof of the lower bound of Cramer’s theorem, we have

$$n^{-1} \log \mathbb{P}(n^{-1} S_n \geq a) \geq n^{-1} \log \mathbb{P}(n^{-1} S_n \in [a, a + \delta))$$

$$\geq -I(a) - \theta_0 \delta - n^{-1} \log \mathbb{P}(n^{-1} \tilde{S}_n - a \in [0, \delta))$$

where $\tilde{S}_n = Y_1 + \ldots + Y_n$ and $Y_i (1 \leq i \leq n)$ is i.i.d. random variable following the distribution $\mathbb{P}(Y_i \leq z) = M(\theta_0)^{-1} \int_{-\infty}^{z} \exp(\theta_0 x) dP(x)$. Recall that

$$\mathbb{P}(n^{-1} \tilde{S}_n - a \in [0, \delta)) = \mathbb{P} \left(\frac{\sum_{i=1}^{n} (Y_i - a)}{\sqrt{n}} \in [0, \sqrt{n} \delta) \right)$$

By the CLT, setting $\delta = O(n^{-1/2})$ gives

$$\mathbb{P}(n^{-1} \tilde{S}_n - a \in [0, \delta)) = O(1)$$

Thus, we have

$$n^{-1} \log \mathbb{P}(n^{-1} S_n \geq a) + I(a) \geq -\theta_0 \delta - n^{-1} \log \mathbb{P}(n^{-1} \tilde{S}_n - a \in [0, \delta))$$

$$= -O(n^{-1/2})$$

Combining the result from the upper bound $n^{-1} \log \mathbb{P}(n^{-1} S_n \geq a) \leq -I(a)$, we have

$$|n^{-1} \log \mathbb{P}(n^{-1} S_n \geq a) + I(a)| \leq \frac{C}{\sqrt{n}}$$

(b). Take $a = \mu$. It is obvious, $\mathbb{P}(n^{-1} S_n \geq \mu) \to \frac{1}{2}$ as $n \to \infty$. Recalling that $I(\mu) = 0$, we have

$$|n^{-1} \log \mathbb{P}(n^{-1} S_n \geq \mu) + I(\mu)| \sim \frac{C}{n}$$

Namely, this bound cannot be improved.

3 Problem 3

For any $n \geq 0$, define a point M_n in \mathbb{R}^2 by

$$x_{M_n} = \frac{1}{n} \sum_{i \leq n} X_i$$
and
\[y_{\max} = \frac{1}{n} \sum_{i \leq n} Y_i \]

Let \(B_0(1) \) be the open ball of radius one in \(\mathbb{R}^2 \). From these definitions, we can rewrite
\[
P \left(\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 + \left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right)^2 \geq 1 \right) = P(M_n \notin B_0(1))
\]

We will apply Cramer’s Theorem in \(\mathbb{R}^2 \):
\[
\lim_{n \to \infty} \frac{1}{n} P \left(\left(\frac{1}{n} \sum_{i=1}^{n} X_i \right)^2 + \left(\frac{1}{n} \sum_{i=1}^{n} Y_i \right)^2 \geq 1 \right) = -\inf_{(x,y) \in B_0(1)^c} I(x,y)
\]

where
\[I(x,y) = \sup_{(\theta_1, \theta_2) \in \mathbb{R}^2} (\theta_1 x + \theta_2 y - \log(M(\theta_1, \theta_2))) \]

with
\[M(\theta_1, \theta_2) = \mathbb{E}[\exp(\theta_1 X + \theta_2 Y)] \]

Note that since \((X, Y)\) are presumed independent, \(\log(M(\theta_1, \theta_2)) = \log(M_X(\theta_1)) + \log(M_Y(\theta_2))\), with \(M_X(\theta_1) = \mathbb{E}[\exp(\theta_1 X)]\) and \(M_Y(\theta_2) = \mathbb{E}[\exp(\theta_2 Y)]\).

We can easily compute that
\[M_X(\theta) = \exp\left(\frac{\theta^2}{2}\right) \]

and
\[M_Y(\theta) = \mathbb{E}[e^{\theta Y}] = \int_{-1}^{1} e^{\theta y} \frac{1}{2} dy = \frac{1}{2} \left[e^{\theta y} \right]_{-1}^{1} = \frac{1}{2} \left(e^{\theta} - e^{-\theta} \right) \]

Since \((x, y)\) are decoupled in the definition of \((x, y)\), we obtain
\[I(x, y) = I_X(x) + I_Y(y) \]

with
\[I_X(x) = \sup_{\theta_1} g_1(x, \theta_1) = \sup_{\theta_1} (\theta_1 x - \frac{\theta_1^2}{2}) = \frac{x^2}{2} \]
\[I_Y(y) = \sup_{\theta_2} g_2(y, \theta_2) = \sup_{\theta_2} (\theta_2 y - \log(\frac{1}{2\theta} (e^{\theta_2} - e^{-\theta_2}))) \]

Since for all \(y, \theta_2, g_2(y, \theta_2) = g_2(-y, -\theta_2)\), for all \(y\), \(I_Y(y) = I_Y(-y)\).
Since $I_X(x)$ is increasing in $|x|$ and $I_Y(y)$ is increasing in $|y|$, the maximum is attained on the circle $x^2 + y^2 = 1$, which can be reparametrized as a one-dimensional search over an angle ϕ. Optimizing over ϕ, we find that the minimum of $I(x, y)$ is obtained at $x = 1, y = 0$, and that the value is equal to $\frac{1}{2}$. We obtain

$$\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{1}{n} \sum_{i=1}^{n} X_i^2 + \frac{1}{n} \sum_{i=1}^{n} Y_i^2 \geq 1 \right) = -\frac{1}{2}$$

4 Problem 4

We denote Y_n the set of all length-n sequences which satisfy condition (a). The first step of our method will be to construct a Markov Chain with the following properties:

- For every $n \geq 0$, and any sequence $(X_1, ..., X_n)$ generated by the Markov Chain, $(X_1, X_2, ..., X_n)$ belongs to Y_n.

- For every $n \geq 0$, and every $(x_1, ..., x_n) \in Y_n$, $(x_1, ..., x_n)$ has positive probability, and all sequences of Y_n are “almost” equally likely.

Consider a general Markov Chain with two states $(0, 1)$ and general transition probabilities $(P_{00}, P_{01}; P_{10}, P_{11})$. We immediately realize that if $P_{11} > 0$, sequences with two consecutive ones don’t have zero probability (in particular, for $n = 2$, the sequence $(1, 1)$ has probability $\nu(1)P_{11}$. Therefore, we set $P_{11} = 0$ (and thus $P_{10} = 0$), and verify this enforces the first condition.

Let now $P_{00} = p, P_{01} = 1 - p$, and let’s find p such that all sequences are almost equiprobable. What is the probability of a sequence $(X_1, ..., X_n)$?

Every 1 in the sequence $(X_1, ..., X_n)$ necessarily transited from a 0, with probability $(1 - p)$.

Zeroes in the sequence $(X_1, ..., X_n)$ can come either from another 0, in which case they contribute a p to the joint probability $(X_1, ..., X_n)$, or from a 1, in which case they contribute a 1. Denote N_0 and N_1 the numbers of 0 and 1 in the sequence $(X_1, ..., X_n)$. Since each 1 of the sequence transits to a 0 of the sequence, there are N_1 zeroes which contribute a probability of 1, and thus $N_0 - N_1$ zeroes contribute a probability of p. This is only ‘almost’ correct, though, since we have to account for the initial state X_1, and the final state X_n. By choosing for initial distribution $\nu(0) = p$ and $\nu(1) = (1 - p)$, the above reasoning applies correctly to X_1.

5
Our last problem is when the last state is 1, in which case that 1 does not give a 1 to 0 transition, and the probabilities of zero-zero transitions is therefore $N_0 - N_1 + 1$. In summary, under the assumptions given above, we have:

$$P(X_1, ..., X_n) = \begin{cases} (1 - p)^{N_1} p^{N_0 - N_1}, & \text{when } X_n = 0 \\ (1 - p)^{N_1} p^{N_0 - N_1 + 1}, & \text{when } X_n = 1 \end{cases}$$

Since $N_0 + N_1 = n$, we can rewrite $(1 - p)^{N_1} p^{N_0 - N_1}$ as $(1 - p)^{N_1} p^{2N_1 - 2N_1}$, or equivalently as $(\frac{1 - p}{p})^{N_1} p^n$. We conclude

$$P(X_1, ..., X_n) = \begin{cases} \left(\frac{1 - p}{p}\right)^{N_1} p^n, & \text{when } X_n = 0 \\ \left(\frac{1 - p}{p}\right)^{N_1} p^{n+1}, & \text{when } X_n = 1 \end{cases}$$

We conclude that if $\frac{1 - p}{p} = 1$, sequences will be almost equally likely. This equation has positive solution $p = \frac{\sqrt{5} - 1}{2} \approx 0.6180$, which we take in the rest of the problem (trivia: $1/p = \phi$, the golden ratio). The steady state distribution of the resulting Markov Chain can be easily computed to be $\pi = (\pi_0, \pi_1) = (\frac{1}{2 - p}, \frac{1}{2 - p}) \sim (0.7236, 0.2764)$. We also obtain the “almost” equiprobable condition:

$$P(X_1, ..., X_n) = \begin{cases} p^n, & \text{when } X_n = 0 \\ p^{n+1}, & \text{when } X_n = 1 \end{cases}$$

We now relate this Markov Chain at hand. Note the following: $\log(|Z_n|) = \log(|Y_n|) + \log(|Y_n|)$, and therefore,

$$\lim_{n \to \infty} \frac{1}{n} \log(Z_n) = \lim_{n \to \infty} \frac{1}{n} \log(|Y_n|) + \lim_{n \to \infty} \frac{1}{n} \log\left(\frac{|Z_n|}{|Y_n|}\right)$$

Let us compute first $\lim_{n \to \infty} \frac{1}{n} \log(|Y_n|)$. This is easily done using our Markov Chain. Fix $n \geq 0$, and observe that since our Markov Chain only generates sequences which belong to Y_n, we have

$$1 = \frac{P(X_1, ..., X_n)}{(X_1, ..., X_n) \in Y_n}$$

Note that for any $(X_1, ..., X_n) \in Y_n$, we have $p^{n+1} \leq P(X_1, ..., X_n) \leq p^n$, and so we obtain

$$p^{n+1}|Y_n| \leq 1 \leq p^n|Y_n|$$
\[\phi^n \leq |Y_n| \leq \phi^{n+1}, \quad n \log \phi \leq \log |Y_n| \leq (n + 1) \log \phi \]

which gives \(\lim_{n \to \infty} \frac{1}{n} \log(|Y_n|) = \log \phi \).

We now consider the term \(\frac{|Z_n|}{|Y_n|} \). The above reasoning shows that intuitively, \(|Y_n| \) is the probability of the equally likely sequences of \((X_1, \ldots, X_n)\), and that \(|Z_n| \) is the number of such sequences with more than 70% zeroes. Basic probability reasoning gives that the ratio is therefore the probability that a random sequence \((X_1, \ldots, X_n)\) has more than 70% zeroes. Let us first prove this formally, and then compute the said probability. Denote \(G(X_1, \ldots, X_n) \) the percent of zeroes of the sequence \((X_1, \ldots, X_n)\). Then, for any \(k \in [0, 1] \)

\[
\mathbb{P}(G(X_1, \ldots, X_n) \geq k) = P(X_1, \ldots, X_n)_{(X_1, \ldots, X_n) \in Z_n}
\]

Reusing the same idea as previously,

\[
\mathbb{P}(G(X_1, \ldots, X_n) \geq k) \leq \frac{1}{n} \log |Z_n| p^n \leq |Z_n| p^n \leq |Z_n| = |Z_n| \left(\frac{1}{1-p} \right)^n \leq \left(\frac{1}{p^n} \right)^n \frac{|Z_n|}{|Y_n|}
\]

Similarly,

\[
\mathbb{P}(G(X_1, \ldots, X_n) \geq k) \leq p \left(\frac{|Z_n|}{|Y_n|} \right)
\]

Taking logs, we obtain

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(G(X_1, \ldots, X_n) \geq k) = \lim_{n \to \infty} \frac{1}{n} \log \left(\frac{|Z_n|}{|Y_n|} \right)
\]

We will use large deviations for Markov Chain to compute that probability. First note that \(G(X_1, \ldots, X_n) \) is the same as \(F(X_i) \), when \(F(0) = 1 \) and \(F(1) = 0 \). By Miller’s Theorem, obtain that for any \(x \),

\[
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}(F(X_i) \geq nk) = - \inf_{x \geq k} I(x)
\]

with

\[
I(x) = \sup_{\theta} (\theta x - \log \lambda(\theta))
\]

where \(\lambda(\theta) \) is the largest eigenvalue of the matrix

\[
M(\theta) = \begin{pmatrix} p \exp(\theta) & 1 - p \\ \exp(\theta) & 0 \end{pmatrix}
\]
The characteristic equation is \(\lambda^2 - (p \exp(\theta)) \lambda - (1 - p) \exp(\theta) = 0 \), whose largest solution is \(\lambda(\theta) = \frac{p \exp(\theta) + \sqrt{p^2 \exp(2\theta) + 4(1 - p) \exp(\theta)}}{2} \). The rate function of the MC is

\[
I(x) = \sup_{\theta} (\theta x - \log(\lambda(\theta)))
\]

Since the mean of \(F \) under the steady state distribution \(\pi \) is above 0.7, the minimum \(\min_{x \geq 0.7} I(x) = I(\mu) = 0 \). Thus, \(\lim_{n \to \infty} \frac{1}{n} \log |Z_n| = 0 \), and we conclude

\[
\lim_{n \to \infty} \frac{1}{n} \log |Z_n| = \log \phi = 0.4812
\]

In general, for \(k \leq \mu \), we will have

\[
\lim_{n \to \infty} \frac{1}{n} \log |Z_n(k)| = \log \phi = 0.4812
\]

and for \(k > \mu \),

\[
\lim_{n \to \infty} \frac{1}{n} \log |Z_n(k)| = \log \phi - \sup_{\theta} (\theta k - \log(\lambda(\theta)))
\]

5 Problem 5

5.1 1(i)

Consider a standard Brownian motion \(B \), and let \(U \) be a uniform random variable over \([1/2, 1]\). Let

\[
W(t) = \begin{cases} B(t), & \text{when } t \neq U \\ B(U) = 0, & \text{otherwise} \end{cases}
\]

With probability 1, \(B(U) \) is not zero, and therefore \(\lim_{t \to U} W(t) = \lim_{t \to U} B(t) = B(U) \neq 0 = W(U) \), and \(W \) is not continuous in \(U \). For any finite collection of times \(t = (t_1, ..., t_n) \) and real numbers \(x = (x_1, ..., x_n) \), denote \(W(t) = (W(t_1), ..., W(t_n)), x = (x_1, ..., x_n) \)

\[
\mathbb{P}(W(t) \leq x) = \mathbb{P}(U \notin \{t_1, 1 \leq i \leq n\}) \mathbb{P}(W(t) \leq x | U \notin \{t_i, 1 \leq i \leq n\}) + \mathbb{P}(U \in \{t_i, 1 \leq i \leq n\}) \mathbb{P}(W(t) \leq x | U \in \{t_i, 1 \leq i \leq n\})
\]

Note that \(\mathbb{P}(U \in \{t_i, 1 \leq i \leq n\}) = 0 \), and \(\mathbb{P}(W(t) \leq x | U \notin \{t_i, i \leq n\}) = \mathbb{P}(B(t \leq x)) \), and thus the Process \(W \) has exactly the same distribution properties as \(B \) (gaussian process, independent and stationary increments with zero mean and variance proportional to the size of the interval).
5.2 1(ii)

Let X be a Gaussian random variable (mean 0, standard deviation 1), and denote \mathbb{Q}_X the set $\{q + x, q \in \mathbb{Q}\} \cup \mathbb{R}_+$ where \mathbb{Q} is the set of rational numbers.

$$W(t) = \begin{cases} B(t), & \text{when } t \notin \mathbb{Q}_X \setminus \{0\} \\ B(t) + 1, & \text{when } t \in \mathbb{Q}_X \setminus \{0\} \end{cases}$$

Through the exact same argument as 1(i), W has the same distribution properties as B (this is because \mathbb{Q}_X, just like $\{t_i, 1 \leq i \leq n\}$, has measure zero for a random variable with density).

However, note that for any $t > 0$, $|t - x - \frac{[(t-x)10^n]}{10^n}| \leq 10^{-n}$, proving that $\lim_n (x + \frac{[(t-x)10^n]}{10^n}) = t$. However, for any n, $x + \frac{[(t-x)10^n]}{10^n} \in \mathbb{Q}_X$, and so $\lim_n W(x + \frac{[(t-x)10^n]}{10^n}) = B(t) + 1 = B(t)$. This proves $W(t)$ is surely discontinuous everywhere.

5.3 2

Let $t \geq 0$, and consider the event $E_n = \{|B(t + \frac{1}{n}) - B(t)| > \epsilon\}$. Then, since $B(t + \frac{1}{n}) - B(t)$ is equal in distribution to $\frac{1}{\sqrt{n}}N$, where N is a standard normal, by Chebychev’s inequality, we have

$$\mathbb{P}(E_n) = \mathbb{P}(n^{-1/2}|N| > \epsilon) = \mathbb{P}(|N| > \epsilon n^{-1/2}) = \mathbb{P}(N^4 > \epsilon^4 n^{-2}) \leq \frac{3}{\epsilon^4 n^2}$$

Since $\sum_n \mathbb{P}(E_n) = \sum_n \frac{1}{n} < \infty$, by Borel-Cantelli lemma, we have that there almost surely exists N such that for all $n \geq N$, $|B(t + 1/n) - B(t)| \leq \epsilon$, proving $\lim_{n \to \infty} B(t + 1/n) = B(t)$ almost surely.

6 Problem 6

The event $B \in A_R$ is included in the event $B(2) - B(1) = B(1) - B(0)$, and thus

$$P(B \in A_R) \leq P(B(2) - B(1) = B(1) - B(0)) = 0$$

Since the probability that two atomless, independent random variables are equal is zero (easy to prove using conditional probabilities).