Class 6 Overview

- Review of Course Projects
- Smart Contracts
- Blockchain Design with Smart Contracts
- DApps and Token Sales
- Legal Issues of Smart Contracts
- Conclusions
Requirements

• Class Participation 30%

• Two Individual Write-ups (15% x 2) 30%
 • Critical Business Reasoning about Class Topic
 • Due prior to Class: 1st by 10th Class; 2nd by 23rd Class

• Group Research Paper 40%
 • Serious effort on Use Case
 • Organize Groups (3 or 4) by 8th Class (10/2)
 • Choose area for Use Cases by 12th Class (10/18)
 • Topics outside of Finance with pre-approval
Class 6 (9/25): Study Questions

• What are smart contracts? How do they compare to traditional contracts? What are tokens?

• What are smart contract platforms such as Ethereum? What generally distinguishes them from Bitcoin?

• What are decentralized applications (DApps)? What has been the usage and why haven’t any DApps yet received wide consumer adoption?
Class 6 (9/25): Readings

Required

• ‘Smart Contracts: 12 Use Cases for Business & Beyond’ Chamber of Digital Commerce
• ‘State of the Dapps: 5 Observations from Usage Data’ McCann
• ‘Ethereum Competitors: Guide to the Alternative Smart Contract Platforms’ Blockonomi

Optional

• ‘Smart Contracts: Building Blocks for Digital Markets’ Szabo
• ‘A Next-Generation Smart Contract and Decentralized Application Platform’ Ethereum
• ‘Blockchain Technology as a Regulatory Technology’ De Filippi & Hassan
Smart Contracts

• “A set of promises,
• specified in digital form,
• including protocols
• within which the parties perform on these promises.”

Nick Szabo, 1996

However

• Smart Contracts may not be ‘Smart’

• Smart Contracts may not be ‘Contracts’
Bitcoin – Technical Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Ethereum?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryptography & Timestamped Logs</td>
<td>Yes</td>
</tr>
<tr>
<td>• Cryptographic Hash Functions</td>
<td>✓</td>
</tr>
<tr>
<td>• Timestamped Append-only Logs (Blocks)</td>
<td>✓</td>
</tr>
<tr>
<td>• Block Headers & Merkle Trees</td>
<td>✓✓</td>
</tr>
<tr>
<td>• Asymmetric Cryptography & Digital Signatures</td>
<td>✓</td>
</tr>
<tr>
<td>• Addresses</td>
<td>✓</td>
</tr>
<tr>
<td>Decentralized Network Consensus</td>
<td>Yes</td>
</tr>
<tr>
<td>• Proof of Work</td>
<td>✓</td>
</tr>
<tr>
<td>• Native Currency</td>
<td>✓</td>
</tr>
<tr>
<td>• Network</td>
<td>✓</td>
</tr>
<tr>
<td>Transaction Script & UTXO</td>
<td>No</td>
</tr>
<tr>
<td>• Transaction Inputs & Outputs</td>
<td></td>
</tr>
<tr>
<td>• Unspent Transaction Output (UTXO) set</td>
<td></td>
</tr>
<tr>
<td>• Script language</td>
<td></td>
</tr>
<tr>
<td>State Transitions</td>
<td></td>
</tr>
<tr>
<td>Account Based</td>
<td></td>
</tr>
<tr>
<td>7 languages</td>
<td></td>
</tr>
</tbody>
</table>
Bitcoin vs Ethereum Design

<table>
<thead>
<tr>
<th>Bitcoin</th>
<th>Ethereum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Founder: Satoshi Nakamoto</td>
<td>Vatalik Buterin</td>
</tr>
<tr>
<td>Genesis: January 2009</td>
<td>July 2015</td>
</tr>
<tr>
<td>Code: Non Turing (Script)</td>
<td>Turing Complete (Solidity, Serpent, LLL or Mutan)</td>
</tr>
<tr>
<td>Ledger: UTXO – Transaction</td>
<td>State - Account Based</td>
</tr>
<tr>
<td>Merkle Trees: Transactions</td>
<td>Transactions, State, Storage, Receipts (w/nonces)</td>
</tr>
<tr>
<td>Block Time: 10 minutes</td>
<td>14 seconds</td>
</tr>
<tr>
<td>Consensus: Proof of Work</td>
<td>Proof of Work</td>
</tr>
<tr>
<td>Hash Function: SHA 256</td>
<td>Etash</td>
</tr>
</tbody>
</table>
Bitcoin vs Ethereum Design

• Currency: Bitcoin ↔ ETH
• Mining: ASIC ↔ GPU
• Hashrate: 54 Exahash/S ↔ 260 Terahash/S
• Pre-sale: None ↔ ICO & prerelease of 72 m ETH
• Rewards: 12.5 BTC/block ↔ 3 ETH/block
• Monetary Policy: 1/2s every 210,000 blocks (4 yrs) ↔ Fixed, but changes by updates (was 5/block; proposal to 2)
• Fees: Voluntary ↔ Needed & market based
Smart Contract Platforms

• Ethereum (2015) - $22 b current market value

• EOS (2018) - $5 b – completed $4.2 b year long ICO in July
• NEO (2016) – $1.1 b - China; delegated BFT; supports wider range of code
• Ethereum Classic (2016) – $1.1 b - Created from the ‘DAO’ hard fork
• LISK (2016) – $360 m - code in Java; uses side chains
• Stratis (2017) - $150 m
Smart Contract Potential Use Cases

Digital Chamber of Commerce (12/16)

• Digital Identity Records
• Securities Trade Finance
• Derivatives Financial Data
• Mortgages Land Title
• Supply Chain Auto Insurance
• Clinical Trials Cancer Research
Decentralized Applications (dApps)

- Applications run on a Decentralized Blockchain Network
- Generally have a Native Token & Run as a Smart Contract on top of a Platform

Source: State of the Dapps (9/18)
Initial Coin Offerings – Crowdfunding for Investment & Consumption

• Proceeds used to build networks
• Tokens usually issued prior to being functional
• Development, while open source, is largely centralized
• Promoters allocate themselves ‘premined’ tokens
• Tokens are fungible & transferable
• Scarcity is fostered with preset ‘Monetary policy’
• Purchasers anticipate profits through appreciation
Historical ICO Fundraising Stats – through till August 2018
$28,178,922,590

EOS $4,213m
Telegram $1,700m

 Courtesy of Elementus. Used under CC BY
Legal Issues – Smart Contracts

Guest Lecturer – Larry Lessig

• Harvard Professor of Law and Leadership
• Founder of Stanford Law’s Center for Internet and Society
• Clerked for Justice Antonin Scalia and for Appeals Court Judge Richard Posner
• Numerous Awards, including Free Software Foundation’s Freedom Award, Fastcase 50 Award and named one of Scientific American’s Top 50 Visionaries

• Author of 8 books, including:
 ‘Code and Other Laws of Cyberspace’
 • Code/architecture – physical or technical constraints
 • Market – economic forces
 • Law – explicit mandates by government
 • Norms – social conventions
Class 7 (9/27): Study Questions

• How critical are the technical and commercial challenges – scalability, efficiency, privacy, security, interoperability – of current blockchain technology?

• What are the possible tradeoffs of decentralization, scalability and security? What are tradeoffs of consensus software updates, governance and so-called ‘hard forks’?

• What might current work – Layer 2 applications, zero-knowledge proofs, alternative consensus algorithms – do to address current commercial challenges?
Class 7 (9/27): Readings

Required

• ‘Geneva Report’ Chapter 2 (pages 9 – 16); Casey, Crane, Gensler, Johnson, and Narula
• ‘On the Scalability of Blockchains’ The Control
• ‘Transaction Speeds: How do Cryptocurrencies Speeds Stack up to Visa or PayPal?’, How Much.net
• ‘Layer 2 / the Lightening Network’ Digital Currency Initiative
• ‘Top 8 Privacy Coins’ Invest in Blockchain

Optional

• ‘On Sharding Blockchains’ Ethereum Wiki
• ‘zkLedger: Privacy-Preserving Auditing for Distributed Ledgers’ Narula, Vasquez & Virza
Conclusions

• Nakamoto’s P2P Money
 Buterin’s Ethereum P2P Computing

• Smart Contracts & DApps Provide:
 • Decentralized Computing &
 • Self Executing Commitments

• Token Sales for Proposed DApps have Spawned new form of
 Crowdfunding – Initial Coin Offerings (ICOs)

• Amongst 1000’s of Proposals & Offerings, Few DApps have yet Gained
 Wide Consumer Adoption

• Smart Contracts and DApps, though, have real Potential to bring Change