Derivatives (12 videos)
Differential Equations of Motion
These equations have 2nd derivatives because acceleration is in Newton’s Law F = ma
The key model equation is (second derivative) y ’ ’ = MINUS y or y ’ ’ = MINUS a^2 y
There are two solutions since the equation is second order. They are SINE and COSINE
y = sin (at) and y = cos (at) Two derivatives bring back sine and cosine with minus a^2
The next step allows damping (first derivative) as in my ’ ’ + dy ’ + ky = 0 How to solve?
Just try y = e^at !! You find that ma^2 + da + k = 0 Two a’s give two solutions: good
Professor Strang’s Calculus textbook (1st edition, 1991) is freely available here.
Subtitles are provided through the generous assistance of Jimmy Ren.
Course Info
Instructor
Departments
As Taught In
Spring
2010
Level
Learning Resource Types
theaters
Lecture Videos
notes
Lecture Notes