RES.6-002 | Spring 2008 | Undergraduate

Electromagnetic Field Theory: A Problem Solving Approach

Textbook contents

Electromagnetic Field Theory as one file: (PDF 1 of 3 - 3.9MB) (PDF 2 of 3 -  3.2MB) (PDF 3 of 3 - 3.3MB)

Electromagnetic Field Theory Textbook Components

TEXTBOOK CONTENTS FILES
Front-End Matter

Title page (PDF)

Dedication (PDF)

Preface (PDF)

Note to the student and instructor (PDF)

Table of contents, ix-xix (PDF)

Title page 2 (PDF)

Solutions to selected problems, pp. 699-710 (PDF)

Index, pp. 711-723 (PDF)

Useful equations and constants (PDF)

 
Chapter 1: Review of Vector Analysis, pp. 1-48 (PDF)

1.1 Coordinate systems, pp. 2-7

1.2 Vector Algebra, pp. 7-16

1.3 The gradient and the del operator, pp. 16-21

1.4 Flux and divergence, pp. 21-28

1.5 The Curl and Stokes’ theorem, pp. 28-39

Problems, pp. 39-48

Sections 1.1-1.5 (PDF)

Problems (PDF)

Chapter 2: The Electric Field, pp. 49-134 (PDF - 8MB)

2.1 Electric charge, pp. 50-54

2.2 The Coulomb force law between stationary charges, pp. 54-59

2.3 Charge distributions, pp. 59-72

2.4 Gauss’s law, pp. 72-84

2.5 The electric potential, pp. 84-93

2.6 The method of images with line charges and cylinders, pp. 93-103

2.7 The method of images with point charges and spheres, pp. 103-110

Problems, pp. 110-134

Sections 2.1-2.7 (PDF)

Problems (PDF - 2.7MB)

Chapter 3: Polarization and Conduction, pp. 135-256 (PDF - 1.9MB)

3.1 Polarization, pp. 136-152

3.2 Conduction, pp. 152-161

3.3 Field boundary conditions, 161-169

3.4 Resistance, pp. 169-173

3.5 Capacitance, pp. 173-181

3.6 Lossy media, pp. 181-197

3.7 Field-dependent space charge distributions, pp. 197-204

3.8 Energy stored in a dielectric medium, pp. 204-213

3.9 Fields and their forces, pp. 213-223

3.10 Electrostatic generators, pp. 223-231

Problems, pp. 231-256

Sections 3.1-3.10 (PDF - 1.4MB)

Problems (PDF)

Chapter 4: Electric Field Boundary Value Problems, pp. 257-312 (PDF)

4.1 The uniqueness theorem, pp. 258-259

4.2 Boundary value problems in Cartesian geometries, pp. 259-271

4.3 Separation of variables in cylindrical geometry, pp. 271-284

4.4 Product solutions in spherical geometry, pp. 284-297

4.5 A numerical method-successive relaxation, pp. 297-301

Problems, pp. 301-312

Sections 4.1-4.5 (PDF)

Problems (PDF)

Chapter 5: The Magnetic Field, pp. 313-392 (PDF - 1.2MB)

5.1 Forces on moving charges, pp. 314-322

5.2 Magnetic field due to currents, pp. 322-332

5.3 Divergence and curl of the magnetic field, pp. 332-336

5.4 The vector potential, pp. 336-343

5.5 Magnetization, pp. 343-359

5.6 Boundary conditions, pp. 359-361

5.7 Magnetic field boundary value problems, pp. 361-368

5.8 Magnetic fields and forces, pp. 368-375

Problems, pp. 375-392

Sections 5.1-5.8 (PDF)

Problems (PDF)

Chapter 6: Electromagnetic Induction, pp. 393-486 (PDF - 2.7MB)

6.1 Faraday’s law of induction, pp. 395-405

6.2 Magnetic circuits, pp. 405-417

6.3 Faraday’s law for moving media, pp. 417-435

6.4 Magnetic diffusion into an ohmic conductor, pp. 435-451

6.5 Energy stored in the magnetic field, pp. 451-460

6.6 The energy method for forces, pp. 460-465

Problems, pp. 465-486

Sections 6.1-6.6 (PDF - 1.1MB)

Problems (PDF)

Chapter 7: Electrodynamics-Fields and Waves, pp. 487-566 (PDF - 1.2MB)

7.1 Maxwell’s equations, pp. 487-490

7.2 Conservation of energy, pp. 490-496

7.3 Transverse electromagnetic waves, pp. 496-505

7.4 Sinusoidal time variations, pp. 505-520

7.5 Normal incidence onto a perfect conductor, pp. 520-522

7.6 Normal incidence onto a dielectric, pp. 522-529

7.7 Uniform and nonuniform plane waves, pp. 529-534

7.8 Oblique incidence onto a perfect conductor, pp. 534-538

7.9 Oblique incidence onto a dielectric, pp. 538-544

7.10 Applications to optics, pp. 544-552

Problems, pp. 552-566

Sections 7.1-7.10 (PDF)

Problems (PDF)

Chapter 8: Guided Electromagnetic Waves, pp. 567-662 (PDF - 1.6MB)

8.1 The transmission line equations, pp. 568-579

8.2 Transmission line transient waves, pp. 579-595

8.3 Sinusoidal time variations, pp. 595-607

8.4 Arbitrary impedance terminations, pp. 607-620

8.5 Stub tuning, pp. 620-629

8.6 The rectangular waveguide, pp. 629-644

8.7 Dielectric waveguide, pp. 644-649

Problems, pp. 649-662

Sections 8.1-8.7 (PDF - 1.5MB)

Problems (PDF)

Chapter 9: Radiation, pp. 663-698 (PDF - 3.8MB)

9.1 The retarded potentials, pp. 664-667

9.2 Radiation from point dipoles, pp. 667-681

9.3 Point dipole arrays, pp. 681-687

9.4 Long dipole antennas, pp. 687-694

Problems, pp. 695-698

Sections 9.1-9.4 (PDF)

Problems (PDF)

For any use or distribution of this textbook, please cite as follows:

Markus Zahn, Electromagnetic Field Theory. (Massachusetts Institute of Technology: MIT OpenCourseWare). http://ocw.mit.edu (accessed MM DD, YYYY). License: Creative Commons Attribution-NonCommercial-Share Alike.

Course Info

Instructor
As Taught In
Spring 2008
Learning Resource Types
Online Textbook
Problem Sets with Solutions