Course Description
This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and …
This course focuses on the use of modern computational and mathematical techniques in chemical engineering. Starting from a discussion of linear systems as the basic computational unit in scientific computing, methods for solving sets of nonlinear algebraic equations, ordinary differential equations, and differential-algebraic (DAE) systems are presented. Probability theory and its use in physical modeling is covered, as is the statistical analysis of data and parameter estimation. The finite difference and finite element techniques are presented for converting the partial differential equations obtained from transport phenomena to DAE systems. The use of these techniques will be demonstrated throughout the course in the MATLAB® computing environment.
Learning Resource Types
grading Exams with Solutions
assignment_turned_in Problem Sets with Solutions
Colorful figure showing velocity distribution inside a duct.
Velocity distribution inside duct, Newtonian fluid. (Produced by Professor Kenneth Beers with MATLAB® software.)