15.084J | Spring 2004 | Graduate
Nonlinear Programming
Course Description
This course introduces students to the fundamentals of nonlinear optimization theory and methods. Topics include unconstrained and constrained optimization, linear and quadratic programming, Lagrange and conic duality theory, interior-point algorithms and theory, Lagrangian relaxation, generalized programming, and …
This course introduces students to the fundamentals of nonlinear optimization theory and methods. Topics include unconstrained and constrained optimization, linear and quadratic programming, Lagrange and conic duality theory, interior-point algorithms and theory, Lagrangian relaxation, generalized programming, and semi-definite programming. Algorithmic methods used in the class include steepest descent, Newton’s method, conditional gradient and subgradient optimization, interior-point methods and penalty and barrier methods.
Learning Resource Types
theaters Lecture Videos
notes Lecture Notes
A bowl-shaped function plotted as a three-dimentional graph.
A convex function to be optimized. (Graph courtesy of Prof. Robert Freund.)