Lecture Notes

L1 Introduction (PDF)
L2 Degrees of freedom and constraints, rectilinear motion (PDF)
L3 Vectors, matrices and coordinate transformations (PDF)
L4 Curvilinear motion; Cartesian coordinates (PDF)
L5 Other coordinate systems (PDF)
L6 Intrinsic coordinates (PDF)
L7 Relative motion using translating axes (PDF)
L8 Relative motion using rotating axes (PDF)
L9 Linear impulse and momentum; collisions (PDF)
L10 Angular impulse and momentum for a particle (PDF)
L11 Conservation laws for systems of particles (PDF)
L12 Work and energy (PDF)
L13 Conservative internal forces and potential energy (PDF)
L14 Variable mass systems: the rocket equation (PDF)
L15 Central force motion: Kepler’s laws (PDF)
L16 Central force motion: orbits (PDF)
L17 Orbit transfers and interplanetary trajectories (PDF)
L18 Exploring the neighborhood: the restricted three-body problem (PDF)
L19 Vibration, normal modes, natural frequencies, instability (PDF)
L20 Energy methods: Lagrange’s equations (PDF)
L21 2D rigid body dynamics (PDF)
L22 2D rigid body dynamics: work and energy (PDF)
L23 2D rigid body dynamics: impulse and momentum (PDF)
L24 Pendulums (PDF)
L25 3D rigid body kinematics (PDF)
L26 3D rigid body dynamics: the inertia tensor (PDF)
L27 3D rigid body dynamics: kinetic energy, instability, equations of motion (PDF)
L28 3D rigid body dynamics: equations of motion; Euler’s equations (PDF)
L29 3D rigid body dynamics (PDF)
L30 3D rigid body dynamics: tops and gyroscopes (PDF)
L31 Inertial instruments and inertial navigation (PDF)

Dynamics and control challenges that occurred during the Apollo project

(Courtesy of Dr. Bill Widnall. Used with permission.)