Professor’s instructions on preparing lectures for class (PDF)

The lecture notes were prepared by the Instructor Dr. Emma Carberry and the students: Kai Fung, David Glasser, Michael Nagle, Nizam Ordulu. The full set of lecture notes are available as a single file (PDF) or mapped to the lectures in the table below.

lec # | TOPICS |
---|---|

1 | Introduction (PDF) |

2 | A Review on Differentiation (PDF) |

3 | Inverse Function Theorem (PDF) |

4 | Implicit Function Theorem (PDF) |

5 | First Fundamental Form (PDF) |

6 | Curves (PDF) |

7 | Gauss Map I: Background and Definition (PDF) |

8 | Gauss Map II: Geometric Interpretation (PDF) |

9 | Gauss Map III: Local Coordinates (PDF) |

10 | Introduction to Minimal Surfaces I (PDF) |

11 | Introduction to Minimal Surfaces II (PDF) |

12 | Review on Complex Analysis I (PDF) |

13 | Review on Complex Analysis II (PDF) |

14 | Isothermal Parameters (PDF) |

15 | Bernstein’s Theorem (PDF) |

16 | Manifolds and Geodesics I (PDF) |

17 |
Manifolds and Geodesics II (PDF) |

18 |
Complete Minimal Surfaces I (PDF) |

19 |
Complete Minimal Surfaces II (PDF) |

20 | Weierstrass-Enneper Representations (PDF) |

21 | Gauss Maps and Minimal Surfaces (PDF) |