Course Materials

All of the materials linked on this page are available on the original GitHub site developed for the course.

Lectures Slides videos jupyter notebooks other resources
1. Analyzing COVID-19 Data
(March 30, 2020)

Welcome Slides

Lecture 1 Slides

Welcome Video

Data Analysis

Exploring Data on Covid-19

Video: 3Blue1Brown:Simulating an Epidemic 

Video: How to Tell If We’re Beating COVID-19

Blog: COVID-19 in Denmark

2. Modelling Exponential Growth
(April 1, 2020)
Lecture 2 Slides Lecture 2 Video Exponential and Logistic Growth

Covid-19 Trajectory

xkcd comic “Scenario 4”

3. Probability
(April 6, 2020)
Lecture 3 Slides Lecture 3 Video Modelling Recovery with Probability

<none> 

4. Random Walk Models
(April 8, 2020)
Lecture 4 Slides Lecture 4 Video Random Walks

<none> 

5. Characterizing Variability
(April 13, 2020)
Lecture 5 Slides Lecture 5 Video Variability and Custom Types 

Video: Covid-19 3 Blue 1 Brown 

6. User-defined Types
(April 15, 2020)
Lecture 6 Slides Lecture 6 Video  Defining New Types

Epidemic Calculator 

7. Markov Chains and Continuous Random Variables
(April 22, 2020)
Lecture 7 Slides Lecture 7 Video   Markov Chains and Continuous Random Variables
 

<none> 

8. Continuous Time
(April 27, 2020)
Lecture 8 Slides Lecture 8 Video   Continuous Time

<none> 

9. Exponential Distribution
(April 29, 2020)
<none> Lecture 9 Video   Exponential Distribution

<none>

10. Differential Equations
(May 4, 2020)
Lecture 10 Slides Lecture 10 Video  <none>

<none>

11. Optimization and Fitting to Data
(May 6, 2020)
Lecture 11 Slides Lecture 11 Video   <none>

<none>

12. Networks in Epidemic Modelling
(May 11, 2020)
Lecture 12 Slides Lecture 12 Video   Networks 

<none>

Code content is licensed under the MIT license.

Text content is licensed under the CC BY-NC-SA license.