2.160 | Spring 2006 | Graduate
Identification, Estimation, and Learning
Course Description
This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, …
This course provides a broad theoretical basis for system identification, estimation, and learning. Students will study least squares estimation and its convergence properties, Kalman filters, noise dynamics and system representation, function approximation theory, neural nets, radial basis functions, wavelets, Volterra expansions, informative data sets, persistent excitation, asymptotic variance, central limit theorems, model structure selection, system order estimate, maximum likelihood, unbiased estimates, Cramer-Rao lower bound, Kullback-Leibler information distance, Akaike’s information criterion, experiment design, and model validation.
Learning Resource Types
assignment Problem Sets
grading Exams
notes Lecture Notes
A photograph of the Mars rover.
The Mars rover relies on sophisticated identification and estimation techniques to navigate the Martian terrain. (Image courtesy of NASA.)