G = Goodman, Joseph W. *Statistical Optics.* Hoboken, NJ: Wiley-Interscience, 2000. ISBN: 9780471399162.

B = Bertero, Mario, and Patrizia Boccacci. *Introduction to Inverse Problems in Imaging.* London, NY: Taylor & Francis, 1998. ISBN: 9780750304351.

LEC # | TOPICS | READINGS |
---|---|---|

1 | Introduction: Statistical Optics, Inverse Problems | |

2 | Fourier Optics Overview | |

3 | Random Variables: Basic Definitions, Moments | G2.1-4 |

4 | Random Variables: Transformations, Gaussians | G2.5-9 |

5 | Examples: Probability Theory and Statistics | Notes |

6 | Random Processes: Definitions, Gaussian, Poisson | G3.1-7 |

7 | Examples: Gaussian Processes | Notes |

8 | Random Processes: Analytic Representation | G3.8-10 |

9 | Examples: Complex Gaussian Processes | Notes |

10 | 1st-Order Light Statistics | G4.1-4 |

11 | Examples: Thermal and Laser Light | Notes |

12 | 2nd-Order Light Statistics: Coherence | G5.1-3 |

13 | Example: Integrated Intensity | G6.1 |

14 | The van Cittert-Zernicke Theorem | G5.4-6 |

15 | Example: Diffraction from an Aperture | G5.7 |

16 |
The Intensity Interferometer
Speckle |
G6.3
7.5 |

17 |
Examples: Stellar Interferometer, Radio Astronomy, Optical Coherence Tomography |
Notes |

18 | Effects of Partial Coherence on Imaging | Class |

19 | Information Theory: Entropy, Mutual Information | Notes |

20 | Example: Gaussian Channels | Notes |

21 |
Convolutions, Sampling, Fourier Transforms
Information-Theoretic View of Inverse Problems |
B2.1-7
and Notes |

22 |
Imaging Channels
Regularization |
B3.1-5,
5.1-3 |

23 |
Inverse Problem Case Study: Tomography
Radon Transform, Slice Projection Theorem |
B8.2-3
9.5, 11.1 |

24 | Filtered Backprojection | B11.2-3 |

25 | Super-Resolution and Image Restoration | B10.1-5, 11.4-5 |

26 | Information-Theoretic Performance of Inversion Methods | Class |