There is no textbook required for the course. Lecture notes are available for the current term as well as selected lecture notes from a previous term. Reference textbooks for each topic are listed in the table below. Lecture notes also contain references.
TOPICS | READINGS |
---|---|
Network flows | Ahuja, R. K., T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications. Upper Saddle River, NJ: Prentice Hall, 1993. ISBN: 9780136175490. |
Data structures |
For both splay trees and dynamic trees: Sleator, and Tarjan. “Self-adjusting Binary Search Trees.” Journal of the ACM 32, no. 3 (July, 1985): 652-686. ISSN: 0004-5411. Cormen, T.H., C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. 2nd ed. Cambridge, MA: MIT Press, 2001. ISBN: 9780262032933. |
Linear programming |
Schrijver, A. Theory of Linear and Integer Programming. New York, NY: John Wiley & Sons, 1998. ISBN: 9780471982326. For the Ellipsoid, 3 references are: Groetschel, M., L. Lovasz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. New York, NY: Springer-Verlag, 1993, chapter 3. ISBN: 9780387567402. [The standard reference on the ellipsoid. The most complete and precise description.] Chvatal, V. Linear Programming. New York, NY: W.H. Freeman and Company, 1983, appendix. ISBN: 9780716715870. [An easy to read description without all the details.] Korte, B. H., and J. Vygen. Combinatorial Optimization. New York, NY: Springer-Verlag, 2002, chapter 4. ISBN: 9783540431541. [A detailed description.] For Interior-point Algorithms, a good reference is: Roos, C., T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear Optimization: An Interior Point Approach. New York, NY: John Wiley & Sons, 1997. ISBN: 9780471956761. |
Convex programming |
Boyd, Stephen, and Lieven Vandenberghe. Convex Optimization . Cambridge, UK: Cambridge Univ. Press, 2005. ISBN: 9780521833783 Nemirovski, Arkadi. “Lectures on Modern Convex Optimization.” (PDF - 2.7 MB) |
Approximation algorithms |
Vazirani, V. Approximation Algorithms. New York, NY: Springer-Verlag, 2004. ISBN: 9783540653677. Hochbaum, D., ed. Approximation Algorithms for NP-Hard Problems. Boston: PWS Publishing Company, 1996. ISBN: 9780534949686. Arora, Sanjeev. “Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and Other Geometric Problems.” Journal of the ACM 45, no. 5 (September, 1998). New York, NY, USA: ACM Press. ISSN: 0004-5411. |
Geometric algorithms |
de Berg, Mark, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry. 3rd ed. New York, NY: Springer-Verlag, 2008. ISBN: 9783540779735 |
Streaming algorithms |
S. Muthukrishnan, “Data streams: Algorithms and applications”, Foundations and Trends in Theoretical Computer Science, Volume 1, issue 2, 2005. |
Number-theoretic algorithms |
Lov’asz, L. “An Algorithmic Theory of Numbers, Graphs, and Convexity.” In CBMS Regional Conference Series in Applied Mathematics (SIAM, 1986). Philadelphia, PA: Society for Industrial and Applied Mathematics, 1987. ISBN: 9780898712032. Bach, E., and J. Shallit. Algorithmic Number Theory. Vol. 1. Cambridge, MA: MIT Press, August 26, 1996. ISBN: 9780262024051. |