Lecture Notes

LEC # TOPICS
1 Introduction and Overview ( PDF)
2 Parsing and Syntax I ( PDF)
3 Smoothed Estimation, and Language Modeling ( PDF)
4 Parsing and Syntax II ( PDF)
5 The EM Algorithm ( PDF)
6 The EM Algorithm Part II ( PDF)
7 Lexical Similarity ( PDF)
8 Lexical Similarity (cont.) ( PDF)
9 Log-Linear Models ( PDF)
10 Tagging and History-based Models ( PDF)
11 Grammar Induction ( PDF)
12 Computational Modeling of Discourse ( PDF)
13 Text Segmentation ( PDF - 3.6 MB)
14 Local Coherence and Coreference ( PDF)
15 Machine Translation ( PDF)
16 Machine Translation (cont.) ( PDF)
17 Machine Translation (cont.) ( PDF 1) ( PDF 2 - 1.4 MB) (Courtesy of Philipp Koehn and Ivona Kucerova. Used with permission.)
18 Graph-based Methods for NLP Applications ( PDF)
19 Word Sense Disambiguation ( PDF)
20 Global Linear Models ( PDF)
21 Global Linear Models Part II ( PDF)
22 Dialogue Processing ( PDF)
23 Dialogue Processing (cont.) ( PDF)
24 Guest Lecture: Stephanie Seneff
25 Text Summarization ( PDF)

Course Info

Learning Resource Types

notes Lecture Notes
assignment Problem Sets