LEC # | TOPICS |
---|---|
1 | Introduction, linear classification, perceptron update rule (PDF) |
2 | Perceptron convergence, generalization (PDF) |
3 | Maximum margin classification (PDF) |
4 | Classification errors, regularization, logistic regression (PDF) |
5 | Linear regression, estimator bias and variance, active learning (PDF) |
6 | Active learning (cont.), non-linear predictions, kernals (PDF) |
7 | Kernal regression, kernels (PDF) |
8 | Support vector machine (SVM) and kernels, kernel optimization (PDF) |
9 | Model selection (PDF) |
10 | Model selection criteria (PDF) |
11 | Description length, feature selection (PDF) |
12 | Combining classifiers, boosting (PDF) |
13 | Boosting, margin, and complexity (PDF) |
14 | Margin and generalization, mixture models (PDF) |
15 | Mixtures and the expectation maximization (EM) algorithm (PDF) |
16 | EM, regularization, clustering (PDF) |
17 | Clustering (PDF) |
18 | Spectral clustering, Markov models (PDF) |
19 | Hidden Markov models (HMMs) (PDF) |
20 | HMMs (cont.) (PDF) |
21 | Bayesian networks (PDF) |
22 | Learning Bayesian networks (PDF) |
23 |
Probabilistic inference Guest lecture on collaborative filtering (PDF) |
24 | Current problems in machine learning, wrap up |
Lecture Notes
Course Info
Instructors
Departments
As Taught In
Fall
2006
Level
Topics
Learning Resource Types
assignment_turned_in
Problem Sets with Solutions
grading
Exams with Solutions
notes
Lecture Notes