8.04 | Spring 2016 | Undergraduate
Quantum Physics I

Video Lectures

The videos in this course are broadly divided into three parts:

Part 1: Basic Concepts

In Part 1, we introduce the basic concepts: Interpretation of the wavefunction, relation to probability, Schrödinger equation, Hermitian operators and inner products. We also discuss wave-packets, time evolution, Ehrenfest theorem and uncertainty.

Part 2: Quantum Physics in One-dimensional Potentials

Part 2 deals with solutions of the Schrödinger equation for one-dimensional potentials. We discuss stationary states and the key problems of a particle moving in: A circle, an infinite well, a finite square well, and a delta-function potential. We examine qualitative properties of the wavefunction. The harmonic oscillator is solved in two ways: Using the differential equation and using creation and annihilation operators. We study barrier penetration and the Ramsaur—Townsend effect.

Part 3: One-dimensional Scattering, Angular Momentum, and Central Potentials

Part 3 begins with the subject of scattering on the half-line. One can learn in this simpler context the basic concepts needed in 3-dimensional scattering theory: Scattered wave, phaseshifts, time delays, Levinson theorem, and resonances. We then turn to three-dimensional central potential problems. We introduce the angular momentum operators and derive their commutator algebra. The Schrödinger equation is reduced to a radial equation. We discuss the hydrogen atom in detail.

Course Info
Departments
As Taught In
Spring 2016
Learning Resource Types
theaters Lecture Videos
assignment Problem Sets
grading Exams
notes Lecture Notes