Many of the readings are from the required course text:
Dayan, Peter, and L. F. Abbott.Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001. ISBN: 9780262041997.
Lec #  TOPICS  READINGS 

1 
Introduction Examples of Neural Coding, Simple Linear Regression 
Dayan and Abbott, section 1.1. Wessel, R., C. Koch, and F. Gabbiani. “Coding of timevarying electric field amplitude modulations in a wavetype electric fish.” J of Neurophysiology 75, no. 6 (1996): 228093. Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. “Fitting Data to a Straight Line.” In Numerical Recipes in C: The Art of Scientific Computing. New York, NY: Cambridge University Press, 1992. ISBN: 9780521431088. 
2 
Convolution and Correlation 1 Firing Rate 
Dayan and Abbot, section 1.21.3. Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. “Convolution and Deconvolution Using the FFT.” In Numerical Recipes in C: The Art of Scientific Computing. New York, NY: Cambridge University Press, 1992. ISBN: 9780521431088. 
Optional Lecture 1 Initializing and Using Vectors and Matrices in MATLAB®, Matrix Shortcuts, Plots in MATLAB®, Useful Commands Simple Statistics and Linear Regression 

3 
Convolution and Correlation 2 Spiketriggered Average WienerHopf Equations and White Noise Analysis 
Dayan and Abbot, sections 2.12.2. Press, William H., Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. “Correlation and Autocorrelation Using the FFT.” In Numerical Recipes in C: The Art of Scientific Computing. New York, NY: Cambridge University Press, 1992. ISBN: 9780521431088. 
4 
Visual Receptive Fields 1 Basics of the Visual System, Centersurround Receptive Fields, Simple and Complex Cortical Cells 
Palmer, Stephen E. Vision Science  Photons to Phenomenology_._ Cambridge, MA: MIT Press, 1999, pp. 146154. ISBN: 9780262161831. Dayan and Abbot, sections 2.32.6. 
Optional Lecture 2 Probability Theory 

5  Visual Receptive Fields 2  
Optional Lecture 3 Markov Processes 

6  Operant Matching 1 
Gallistel, C., T. Mark, A. King, and P. Latham. “The Rat Approximates an Ideal Detector of Changes in Rates of Reward.” Journal of Experimental Psychology: Animal Behavior Processes 27 (2001): 354372. Herrnstein, R. “On the Law of Effect.” Journal of the Experimental Analysis of Behavior 13, no. 2 (March 1970): 243266. 
7  Operant Matching 2 
Seung, H. S. “Matching and maximizing are two ends of a spectrum of policy search algorithms.” Manuscript (January 2, 2004.) (PDF) Herrnstein, R., and D. Prelec. Melioration: A Theory of Distributed Choice. The Journal of Economic Perspectives 5, no. 3 (Summer, 1991): 137156. 
8  Games 1  Camerer, Colin F. Behavioral Game Theory. Princeton, NJ: Princeton University Press, 2003. ISBN: 9780691090399. 
Optional Lecture 4 Linear Stability Analysis 

9  Games 2 
Sanfey, A., J. Rilling, J. Aronson, L. Nystrom, and J. Cohen. “The Neural Basis of Economic DecisionMaking in the Ultimatum Game.” Science 300, no. 5626 (June 13, 2003): 17558. Camerer, C. “Strategizing in the Brain.” Science 300, no. 5626 (June 13, 2003): 16735. 
10 
Project Meeting 1 Discussion of Topics, Choice of Projects, Work Begins 

11  Project Meeting 2  
12  Project Meeting 3  
13  Project Meeting 4  
14  Project Presentations 1  
15  Project Presentations 2  
16  Ion Channels, Nernst Equation, Passive Electrical Properties of Neurons 
Dayan and Abbott, section 5.2. Johnston, Daniel, and Samuel MiaoSin Wu. Foundations of Cellular Neurophysiology. Cambridge, MA: MIT Press, 1994, chapter 2. ISBN: 9780262161831. 
17  The Action Potential, HodgkinHuxley Model 1 
Dayan and Abbot, sections 5.3, 5.5, and 5.6. Koch, Christof. Biophysics of Computation, Information Processing in Single Neurons. New York, NY: Oxford University Press, 2004, chapter 6. ISBN: 9780195181999. 
18  HodgkinHuxley Model 2  
19  Atype Potassium Channels, CalciumDependent Potassium Channels  Dayan, and Abbott. Section 6.2. 
20  Synapses  Dayan, and Abbott. Section 5.8. 
Optional Lecture 5 Numerical Methods for Differential Equations 
Dayan, and Abbott. Section 5.11. (Appendices A and B) Sherman, A. “Lecture Notes and Lab Problems on Numerical Methods.” (PDF) (Courtesy of Dr. Arthur Sherman, NIDDK, National Institutes of Health. This work is in the public domain.) Arthur Sherman’s Web page on Numerical Methods in Neuronal Modeling. 

21  Associative Memory 1 
Professor Seung’s notes on the Hopfield Model (PDF) Hopfield, J. J. “Neural networks and physical systems with emergent collective computational abilities.” Proc Natl Acad Sci U.S.A. 79: 255458. 
22  Associative Memory 2 
More of Professor Seung’s notes on Associative Memory (PDF) Miyashita, Y. “Neuronal correlate of visual associative longterm memory in the primate temporal cortex.” Nature 335 (1988): 81720. Griniasty, M., M. V. Tsodyks, and D. J. Amit. “Conversion of temporal correlations between stimuli to spatial correlations between attractors.” Neural Comput 5 (1993): 117. Amit, D. J. “The Hebbian paradigm reintegrated: local reverberations as internal representations.” Behav Brain Sci 18 (1995): 61726. Nakazawa, K., M. C. Quirk, R. A. Chitwood, et al. “Requirement for Hippocampal CA3 NMDA Receptors in Associative Memory Recall.” Science 297 (2002): 211218. 
23  Decisionmaking  
24  Projects  
25  Projects (cont.)  
26  Review  
Final Exam 