Lec # | Topics |
---|---|
1 | Introduction (PDF) |
2 | Foundations of Inductive Learning (PDF) |
3 | Knowledge Representation: Spaces, Trees, Features (PDF) |
4 | Knowledge Representation: Language and Logic 1 (PDF) |
5 | Knowledge Representation: Language and Logic 2 (PDF) |
6 | Knowledge Representation: Great Debates 1 (PDF) |
7 | Knowledge Representation: Great Debates 2 (PDF) |
8 | Basic Bayesian Inference (PDF) |
9 | Graphical Models and Bayes Nets (PDF) |
10 | Simple Bayesian Learning 1 (PDF) |
11 | Simple Bayesian Learning 2 (PDF) |
12 | Probabilistic Models for Concept Learning and Categorization 1 (PDF) |
13 | Probabilistic Models for Concept Learning and Categorization 2 (PDF) |
14 | Unsupervised and Semi-supervised Learning (PDF) |
15 | Non-parametric Classification: Exemplar Models and Neural Networks 1 (PDF - 1.4 MB) |
16 | Non-parametric Classification: Exemplar Models and Neural Networks 2 (PDF) |
17 | Controlling Complexity and Occam’s Razor 1 (PDF) |
18 | Controlling Complexity and Occam’s Razor 2 (PDF) |
19 | Intuitive Biology and the Role of Theories (PDF) |
20 | Learning Domain Structures 1 (PDF - 1.3 MB) |
21 | Learning Domain Structures 2 (PDF) |
22 | Causal Learning (PDF) |
23 | Causal Theories 1 (PDF) |
24 | Causal Theories 2 (PDF) |
25 | Project Presentations |
Lecture Notes
Course Info
Instructor
As Taught In
Fall
2004
Level
Topics
Learning Resource Types
notes
Lecture Notes