Recall: Equation of orbit \(e \cdot r = p - r \) at \(P_1 \) and \(P_2 \) so that

\[
e \cdot r_1 = p - r_1 \\
e \cdot r_2 = p - r_2
\]

\[
\Rightarrow e \cdot (r_2 - r_1) = r_1 - r_2 \quad \text{or} \quad -e \cdot i = \frac{r_2 - r_1}{c}
\]

Orbital Elements of the Fundamental (Minimum Eccentricity) Ellipse

\[
e_F = \frac{|r_2 - r_1|}{c} \quad a_F = \frac{1}{2}(r_1 + r_2) \quad \frac{p_F}{p_m} = \frac{r_1 + r_2}{c}
\]

Since \(p_F = a_F(1 - e_F^2) \) and

\[
1 - e_F^2 = \frac{c^2 - (r_2 - r_1)^2}{c^2} = \frac{1}{c^2}(c + r_2 - r_1)(c + r_1 - r_2)
\]

\[
= \frac{4}{c^2}(s - r_1)(s - r_2) = \frac{4r_1r_2}{c^2} \sin^2 \frac{1}{2} \theta = \frac{2p_m}{c}
\]

From the figure at the top of this page, we see that \(\sin \phi_p = e_F \). Also the angle \(\omega_p \) is the complement of \(\phi_F \) so that \(\cos \omega_p = e_F \). Therefore:

The axes of the conjugate parabolic orbits coincide with the lines through the focus \(F \) and the extremities of the minor axis of the fundamental ellipse.
Locus of Mean Points

Definition of mean point: At the point \(r_0 \), the velocity \(v_0 \) is parallel to the chord. Using the eccentricity vector at this point, we have \(v_0 \times h \cdot (r_2 - r_1) = 0 \) Therefore:

\[
\mu e \cdot (r_2 - r_1) = \left(v_0 \times h - \frac{\mu}{r_0} r_0 \right) \cdot (r_2 - r_1) = 0 - \frac{\mu}{r_0} r_0 \cdot (r_2 - r_1)
\]

Hence:

\[
\frac{e}{r_0} \cdot (r_2 - r_1) = \frac{1}{r_0} r_0 \cdot (r_2 - r_1) \quad \Rightarrow \quad r_0 \cdot (r_2 - r_1) = r_0 (r_2 - r_1)
\]

The loci of all mean points are the lines through the focus \(F \) and the extremities of the minor axis of the fundamental ellipse.

The Line Segment FS:

The line \(FS \) is the distance along mean point locus from the focus \(F \) to intersection with chord. The flight direction angle at \(P_0 \) is \(\gamma_0 \) and \(\delta \) is the angle opposite the line segment \(SP_1 \). Use the law of sines for the triangles:

\[
\Delta FP_1S: \quad \frac{FS}{\sin(\gamma_0 + \delta)} = \frac{r_1}{\sin \gamma_0} \quad \Delta FP_1P_2: \quad \frac{c}{\sin \theta} = \frac{r_2}{\sin(\gamma_0 + \delta)}
\]

and use the calculation on the previous page for \(1 - e_F^2 \):

\[
\Delta FP_0C: \quad \sin \gamma_0 = \frac{b_F}{a_F} = \sqrt{1 - e_F^2} = \frac{2}{c} \sqrt{r_1 r_2 \sin \frac{1}{2} \theta}
\]

Therefore:

\[
FS = \sqrt{r_1 r_2} \cos \frac{1}{2} \theta
\]

Recall the proposition: Lecture 8, Page 2

The line connecting the focus and the point of intersection of the orbital tangents at the terminals bisects the transfer angle.

\[
\sqrt{r_1 r_2} = \begin{cases} FN \cos \frac{1}{2} (E_2 - E_1) & \text{ellipse} \\ FN & \text{parabola} \\ FN \cosh \frac{1}{2} (H_2 - H_1) & \text{hyperbola} \end{cases}
\]

Fig. 6.7 from An Introduction to the Mathematics and Methods of Astrodynamics. Courtesy of AIAA. Used with permission.
For the ellipse \(FN_1 \cos \frac{1}{2} (E_0 - E_1) = \sqrt{r_1 r_0} \) \(FN_2 \cos \frac{1}{2} (E_2 - E_0) = \sqrt{r_0 r_2} \)
and for the parabola \(FN_{1p} = \sqrt{r_1 r_{0p}} \) \(FN_{2p} = \sqrt{r_{0p} r_2} \)
Triangle \(\Delta FN_{1p}N_{2p} \) is similar to triangle \(\Delta FN_1N_2 \). Therefore
\[
\frac{FN_{1p}}{FN_{2p}} = \frac{FN_1}{FN_2} \implies \cos \frac{1}{2} (E_0 - E_1) = \cos \frac{1}{2} (E_2 - E_0)
\]

Hence
\[
E_0 = \frac{1}{2} (E_1 + E_2)
\]

The eccentric anomaly of the mean point of an orbit connecting two termini is the arithmetic mean between the eccentric anomalies of those termini.
Mean-Point Radius of the Parabolic Orbit

Lecture 8, Page 1

The parameter of the parabola is obtained from

$\left(\frac{p_p}{p_m} \right)^2 - 2D \frac{p_p}{p_m} + 1 = 0$
where
$D = \frac{r_1 + r_2 - s(s - c)}{ac} = \frac{r_1 + r_2}{c}$

so that

$\frac{p_p}{p_m} = \frac{1}{c} \left(r_1 + r_2 + 2\sqrt{r_1 r_2} \cos \frac{1}{2} \theta \right) = \frac{1}{c} \left(\sqrt{s + \sqrt{s - c}} \right)^2$

The mean point radius of the parabola is

$r_{0p} = \frac{p_p}{1 + \cos 2\phi_F} = \frac{p_p}{2 \cos^2 \phi_F} = \frac{p_p}{2(1 - e_F^2)} = \frac{p_p c}{4p_m}$

Hence

$$r_{0p} = \frac{1}{4} \left(r_1 + r_2 + 2\sqrt{r_1 r_2} \cos \frac{1}{2} \theta \right) = \frac{1}{2} (a_F + FS)$$

The mean point radius of the parabola extends to the midpoint between the chord and the extremity of the minor axis of the fundamental ellipse.

Mean-Point Radius of Ellipic and Hyperbolic Orbits

Page 270

From the derivation of the eccentric anomaly of the mean point, we have

$FN_2 \cos \frac{1}{2}(E_2 - E_0) = FN_2 \cos \frac{1}{2} \left[E_2 - \frac{1}{2} (E_1 + E_2) \right] = FN_2 \cos \frac{1}{4}(E_2 - E_1) = \sqrt{r_0 r_2}$

so that

$$\frac{FN_2}{FN_{2p}} \cos \frac{1}{4}(E_2 - E_1) = \sqrt{\frac{r_0}{r_{0p}}}$$

But, from similar triangles,

$$\frac{FN_2}{FN_{2p}} = \frac{r_0}{r_{0p}}$$

Therefore, we have the truly elegant expression

$r_0 = r_{0p} \sec^2 \frac{1}{4} (E_2 - E_1) = r_{0p} \sec^2 \frac{1}{2} \psi = r_{0p} (1 + \tan^2 \frac{1}{2} \psi)$

and, as we might expect,

$r_0 = r_{0p} \sech^2 \frac{1}{4} (H_2 - H_1)$

obtains also for hyperbolic orbits.

$$r_0 = \begin{cases}
 a \left[1 - e \cos \frac{1}{2} (E_1 + E_2) \right] = a (1 - \cos \phi) &
 \left\{ \begin{array}{l}
 r_{0p} \left(1 + \tan^2 \frac{1}{2} \psi \right) \\
 r_{0p} \left(1 - \tanh^2 \frac{1}{4} (H_2 - H_1) \right)
 \end{array} \right.
\end{cases}$$