WHEN A USER TAKES A PHOTO, THE APP SHOULD CHECK WHETHER THEY'RE IN A NATIONAL PARK...

SURE, EASY GIS LOOKUP. GIMME A FEW HOURS.

...AND CHECK WHETHER THE PHOTO IS OF A BIRD.

I’LL NEED A RESEARCH TEAM AND FIVE YEARS.

IN CS, IT CAN BE HARD TO EXPLAIN THE DIFFERENCE BETWEEN THE EASY AND THE VIRTUALLY IMPOSSIBLE.

Courtesy of xkcd.com. Used with permission.
Image Classification via Deep Learning

Ryan Alexander, Ishwarya Ananthabhotla, Julian Brown, Henry Nassif, Nan Ma, Ali Soylemezoglu
Overview

• What is Deep Learning?
• Image Processing
• CNN Architecture
• Training Process
• Image Classification Results
• Limitations
Overview

- What is Deep Learning?
- Image Processing
- CNN Architecture
- Training Process
- Image Classification Results
- Limitations
Deep Learning Refers to...

Machine Learning algorithms designed to

extract **high-level abstractions** from data

via **multi-layered processing** architectures

using **nonlinear transformations** at each layer
Human Visual System

• Distributed Hierarchical processing in the primate cerebral cortex (1991)

• The ventral (recognition) pathway in the visual cortex
 - Retina → LGN → V1 → V2 → V4 → PIT → AIT (80-100ms)
How To Classify a Face?

• Identify where the face region is
 • Foreground Extraction
 • Edge Detection

• Classify features of the face
 • Identify and describe eyes, nose, mouth areas

• Look at face as a collection of those features
Common Architectures

• Deep Convolutional Neural Networks (CNNs)
• Deep Belief Networks (DBNs)
• Recurrent Neural Network
Common Architectures

• Deep Convolutional Neural Networks (CNNs)
• Deep Belief Networks (DBNs)
• Recurrent Neural Network
ImageNet Competition Through Time

![Graph showing classification error for top-5 error rate from 2010 to 2015. The error rate decreases from 0.28 in 2010 to 0.049 in 2015. All CNN models are highlighted in the graph, showing a significant improvement over the years.]
Overview

• What is Deep Learning?

• Image Processing

• CNN Architecture

• Training Process

• Image Classification Results

• Limitations
Classic Classification -- Feature Engineering
What if the techniques could be “learned”?

© ACM, Inc. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
Step 1: Convolution - Definition

Informal Definition: Procedure where two sources of information are intertwined.

Formal Definition:

Discrete:

\[
 f[x,y] * g[x,y] = \sum_{n_1=-\infty}^{\infty} \sum_{n_2=-\infty}^{\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2]
\]

Continuous:

\[
 f(x,y) * g(x,y) = \int_{\tau_1=-\infty}^{\infty} \int_{\tau_2=-\infty}^{\infty} f(\tau_1,\tau_2) \cdot g(x-\tau_1,y-\tau_2) \, d\tau_1 \, d\tau_2
\]
Convolution - Example

Assume the following kernel/filter:

<table>
<thead>
<tr>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Convolution

Image

Convolved Feature
More Information? Fourier Transform!

Sum of a set of sinusoidal gratings differing in spatial frequency, orientation, amplitude, phase
Fourier Transform

- Fourier Transform image itself is weird to visualize -- Phase and Magnitude!
- Magnitude -- orientation information at all spatial scales
- Phase -- contour information
Sonnet for Lena

O dear Lena, your beauty is so vast
It is hard sometimes to describe it fast.
I thought the entire world I would impress.
If only your portrait I could impress.
Alas! Fast when I tried to use VQ
I found that your cheeks belong to only you.
Your silky hair contains a thousand lines
Hard to match with some of discrete cones.
And for your lips, sensual and tactical
Thirteen Crays found not the proper fracture.
And while these sethards are all quite severe
I might have fixed them with hacks here or there.
But when filters lack sparkle from your eyes
I said, 'Damn all this. I'll just digitate.'

Thomas Colburne
Overview

• What is Deep Learning?
• Image Processing
• CNN Architecture
• Training Process
• Image Classification Results
• Limitations
Why Neural Net

Hubel & Wiesel (1959, 1962)
The Structure of a Neuron
Combining Neurons into Nets
Convolution Step

(dot product between filter and input)
Convolutional Layer
Activation Step

input_1 \times (weight_1) \rightarrow \sum \rightarrow Activation \rightarrow output

input_2 \times (weight_2) \rightarrow

input_n \times (weight_n) \rightarrow
Activation Layer
CNN overview

- Convolution and Activation
- Subsampling
Activation Step

Each neuron adds up its inputs, and then feeds the sum into a function -- the activation function -- to determine the neuron's output.

Eg: Sigmoid, tanh, ReLu
Activation functions - sigmoid

sigmoid activation function

\[\frac{1}{1 + e^{-x}} \]
Activation function - tanh
Activation function - ReLu

\[f(x) = \max(0, x) \]
Non-linearity Constraint

Activation function is to introduce non-linearity into the network

Without a nonlinear activation function in the network, NN, no matter how many layers it has, will behave like a linear system and we will not be able to mimic a ‘complicated’ function.

A neural network may very well contain neurons with linear activation functions, such as in the output layer, but these require the company of neurons with a nonlinear activation function in other parts of the network.
Convolution Step

An RGB image is represented by a 3 dimensional matrix

The first channel holds the ‘R’ value of each pixel

The second channel holds the ‘G’ value of each pixel

The third channel holds the ‘B’ value of each pixel

Eg: A 32x32 image is represented by a 32x32x3 matrix
Filter 5x5x3
Input Volume vs Output Volume for convolution

Input

\[W_2 = W_1 - \text{(filter width)} + 1 \]

\[H_2 = H_1 - \text{(filter height)} + 1 \]

\[D_2 = 1 \] (\(D_1 = \text{filter depth} \))

Output
Neurons: 28x28x1
Activation Map: 28x28x1
Parameters

Input volume: 32x32x3

Filter size : 5x5x3

Size of 1 activation map: 28*28*1

Depth of first layer: 5

Total Number of neurons: 28*28*5 = 3920

Weights per neuron: 5*5*3 = 75

Total Number of parameters: 75*3920 = 294 000
CNN overview
Subsampling

Objectives:

- Reduce the size of input/feature space
- Keep output of the most responsive neuron of the given interest region.

Common Methods:

- Max Pooling
- Average Pooling

This involves splitting up the matrix of filter outputs into small non-overlapping grids and taking the maximum/average
Single depth slice

\[
\begin{array}{cccc}
1 & 1 & 2 & 4 \\
5 & 6 & 7 & 8 \\
3 & 2 & 1 & 0 \\
1 & 2 & 3 & 4 \\
\end{array}
\]

max pool with 2x2 filters and stride 2

\[
\begin{array}{cc}
6 & 8 \\
3 & 4 \\
\end{array}
\]
Max Pooling
Input Volume vs Output Volume for Max Pooling

\[W_2 = W_1 - \text{(pool width)} + 1 \]
\[H_2 = H_1 - \text{(pool height)} + 1 \]
\[D_2 = D_1 \]
CNN overview
Fully Connected Layer

Neurons in fully connected layers have full connections to all activations in the previous layer.
Softmax

Typically, output layer has one neuron corresponding to each label/class

The **softmax** function, or **normalized exponential**, "squashes" multi-dimensional vector of arbitrary real values to a multi-dimensional vector of values in the range (0, 1) that add up to 1.

\[
P(y = j | x) = \frac{e^{x^T w_j}}{\sum_{k=1}^{K} e^{x^T w_k}}
\]
Overview

• What is Deep Learning?
• Image Processing
• CNN Architecture
• Training Process
• Image Classification Results
• Limitations
Train the Network (setup the problem)

- The training is in fact to find a set of weights (for the filters) that minimize the cost functions, $C(w,b)$.

- Normally, gradient descent algorithm is used to find the optimal

- Therefore, we need to find $\partial C/\partial w_{lj}$ and $\partial C/\partial b_{lj}$, and we update the weights and bias by:

$$w \rightarrow w - \eta \frac{\partial C}{\partial w}$$

$$b \rightarrow b - \eta \frac{\partial C}{\partial b}$$
Train the Network (compute the gradient)

- Traditionally, for one training data, if using conventional method (central difference) and we have a million weights, the cost function, $C(w, b)$, will need to be calculated a million times!!

\[
\frac{\partial C}{\partial w_j} \approx \frac{C(w + \epsilon e_j) - C(w)}{\epsilon}
\]

- How can we just calculate $C(w, b)$ once? -- (Backpropagation Algorithm, Rumelhart, Hinton, and Williams, 1986).
Backward Propagation of Errors

\[\delta = z - y \]

\[\delta_4 = w_{46} \delta \]
Backward Propagation of Errors
Backward Propagation of Errors
Backward Propagation of Errors (put it together)

- Proof: http://neuralnetworksanddeeplearning.com/chap2.html

\[
\frac{\partial C}{\partial w} = \delta \times \text{derivate of activation function} \\
\times \text{output from the neuron in the previous layer}
\]
Backward Propagation of Errors (put it together)

Backward Propagation of Errors (put it together)
Backward Propagation of Errors (put it together)

\begin{align*}
w'_{14} &= w_{14} - \eta \delta_4 \frac{df_4(e)}{de} y_1 \\
w'_{24} &= w_{24} - \eta \delta_4 \frac{df_4(e)}{de} y_2 \\
w'_{34} &= w_{34} - \eta \delta_4 \frac{df_4(e)}{de} y_3
\end{align*}
Backward Propagation of Errors (put it together)

\[w'_{46} = w_{46} - \eta \delta \frac{df_6(e)}{de} y_4 \]

\[w'_{56} = w_{56} - \eta \delta \frac{df_6(e)}{de} y_5 \]
Train the network (Initializing Weights)

Initialization is need for the gradient descent algorithm and it is critical for the learning performance:

\[w'_{46} = w_{46} - \eta \delta \frac{df_6(e)}{de} y_4 \]
\[w'_{56} = w_{56} - \eta \delta \frac{df_6(e)}{de} y_5 \]

Cost \[\rightarrow \] Epoch
Initial Weights

We want to stay away from the saturation area.

Suppose there is \(n \) weights coming in one Neuron

Best strategy is: Normal(0, \(1/\sqrt{n_{in}} \))
Example architecture

Alex Net, 61 millions weights
Preprocessing Tricks and Tips

Suppose we have dataset $X = [N \times D]$, where N is number of data points, and D is their dimensionality

1. Mean Image Subtraction: Subtraction of the mean across each individual feature in dataset

2. Normalization for Dimension: Division by standard deviation
Preprocessing Tricks and Tips

3. Principle Component Analysis (PCA) for dimensionality reduction
 - Generate covariance matrix across the data
 - SVD factorization
 - Decorrelation, rotation into Eigenbasis
 - Choose a top-k eigenvalues: $X' = [N \times K]$

4. Whitening
 - Divide by eigenvalues (square roots of singular values)
 - Result: Zero mean, Identity Covariance

\[
\Sigma = \frac{1}{m} \sum_{i=1}^{m} (x(i))(x(i))^T.
\]
\[
U = \begin{bmatrix}
 u_1 & u_2 & \ldots & u_n \\
\end{bmatrix}
\]

\[
x_{\text{rot}} = U^T x = \begin{bmatrix} u_1^T x \\ u_2^T x \end{bmatrix}
\]
Data Augmentation

1. Rotations
2. Reflections
3. Scaling
4. Cropping
5. Color space remapping
6. Randomization!
Overview

- What is Deep Learning?
- Image Processing
- CNN Architecture
- Training Process
- Image Classification Results
- Limitations
Revisiting the ImageNet Competition (ILSVRC 2010)

<table>
<thead>
<tr>
<th>Model</th>
<th>Top-1 error rate</th>
<th>Top-5 error rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sparse coding</td>
<td>0.47</td>
<td>0.28</td>
</tr>
<tr>
<td>SIFT + FVs</td>
<td>0.46</td>
<td>0.26</td>
</tr>
<tr>
<td>CNNs</td>
<td>0.37</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Google Street View House Numbers

"Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks" by Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet

© Goodfellow, Ian et al. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/
"Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks" by Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet
Recognizing Hand Gestures-HCI application

Extended Image Classification: Video Classification

Extend image classification by adding temporal component to classify videos

Note that this adds additional complexity, but the underlying system is the same: Convolutional Neural Nets
Karpathy, Andrej, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar, and Li Fei-Fei. "Large-Scale Video Classification with Convolutional Neural Networks." *2014 IEEE Conference on Computer Vision and Pattern Recognition* (2014)
Overview

• What is Deep Learning?
• Image Processing
• CNN Architecture
• Training Process
• Image Classification Results
• Limitations
Even the Best have Issues

Microsoft won the most recent ImageNet competition and currently holds the state-of-the-art implementation

They can recognize 1000 categories of images, extremely reliably.

However:

1000 categories does not cover as many objects as you might expect.

Uses 1.28 million images to train

Takes weeks to train on multiple GPUs, with heavy optimization

Szegedy et al. Intriguing Properties of Neural Networks. 2014.

©IEEE. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.
The colours, shapes, smells, patterns and sensations which formed the root of instincts.

Tinbergen succeeded in isolating the traits which triggered certain instincts...

...and then made an interesting discovery.

The instincts had no bounds.

Instead of stopping at a 'sweet spot', the instinctive response would still be produced by unrealistic stimuli.

Once the researchers isolated the instincts' trigger...

...they could create greatly exaggerated dummies which the animals would choose instead of a realistic alternative.
Takeaways

• Deep Learning is a powerful tool that relies on many iterations of processing

• CNNs outperform all other algorithms for image classification because of the image processing power of convolutional filters

• Backpropagation is used to efficiently train CNNs

• CNNs need tons of data and processing power
Getting Started With Deep Learning
References

Backpropagation Tutorial http://neuralnetworksanddeeplearning.com/chap2.html

“Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks” by Ian J. Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, Vinay Shet

Appendix
Backward Propagation of Errors

- The gradient of weights and bias can be found by back chaining the auxiliary variable, defined as:

\[\delta_j^l = \frac{\partial C}{\partial z_j^l} \quad z_j^l = \sum_k w_{jk} a_{k}^{l-1} + b_j^l \]

\[a^l = \sigma(z^l) \]

- By chain rule:

\[\delta_j^L = \frac{\partial C}{\partial a_j^L} \sigma'(z_j^L) \quad \delta^L = \nabla_a C \odot \sigma'(z^L) \]

- The back propagate it (chain rule again):

\[\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l) \]
Backward Propagation of Errors (put it together)

Summary: the equations of backpropagation

\[\delta^L = \nabla_a C \odot \sigma'(z^L) \]

\[\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l) \]

\[\frac{\partial C}{\partial b_{j}^l} = \delta_{j}^l \]

\[\frac{\partial C}{\partial w_{j,k}^l} = a_{k}^{l-1} \delta_{j}^l \]
Train the Network (put it together)

1. **Input a set of training examples**

2. **For each training example** x: Set the corresponding input activation $a^{x,1}$, and perform the following steps:

 - **Feedforward:** For each $l = 2, 3, \ldots, L$ compute
 \[z^{x,l} = w^l a^{x,l-1} + b^l \quad \text{and} \quad a^{x,l} = \sigma(z^{x,l}). \]

 - **Output error** $\delta^{x,L}$: Compute the vector
 \[\delta^{x,L} = \nabla_a C_{x} \odot \sigma'(z^{x,L}). \]

 - **Backpropagate the error:** For each
 \[l = L - 1, L - 2, \ldots, 2 \]
 compute
 \[\delta^{x,l} = \left((w^{l+1})^T \delta^{x,l+1} \right) \odot \sigma'(z^{x,l}). \]

3. **Gradient descent:** For each $l = L, L - 1, \ldots, 2$ update the weights according to the rule
 \[w^l \rightarrow w^l - \frac{n}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T, \]
 and the biases according to the rule
 \[b^l \rightarrow b^l - \frac{n}{m} \sum_x \delta^{x,l}. \]
Convolution: Filters

An output pixel’s value is some function of the corresponding input pixel’s neighbors

Examples:
- Smooth, sharpen, contrast, shift
- Enhance edges
- Detect particular orientations

Approach: Kernel Convolution

\[
\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 90 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 90 \\
0 & 0 & 0 & 0 & 90 & 90 & 90 & 90 & 90 & 90 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Apply Convolution

\[
\begin{array}{ccccccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

\[
\frac{1}{9} = 40
\]
Convolution for 2D matrices

Given two three-by-three matrices, one a kernel, and the other an image piece, convolution is the process of multiplying entries and summing

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \star \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} = (1*a) + (2*b) + (3*g) + (4*f) + (5*e) + (6*d) + (7*c) + (8*b) + (9*a)$$

The output of this operation constitutes the input to a single neuron in the following layer.