Monte Carlo Tree Search
By the end, you will know...

• Why we use Monte Carlo Search Trees
• The pros and cons of MCTS
• How it is applied to Super Mario Brothers and Alpha Go
Outline

I. Pre-MCTS Algorithms
II. Monte Carlo Tree Search
III. Applications
Motivation

• Want to create programs to play games
• Want to play optimally
• Want to be able to do this in a reasonable amount of time
<table>
<thead>
<tr>
<th>Deterministic</th>
<th>Nondeterministic (Chance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Observable</td>
<td>Backgammon, Monopoly</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Chess</td>
<td>Battleship</td>
</tr>
<tr>
<td>Checkers</td>
<td>Card Games</td>
</tr>
<tr>
<td>Go</td>
<td></td>
</tr>
</tbody>
</table>
Pre-MCTS Algorithms

• Deterministic, Fully Observable Games
• “Perfect information”
• Can construct a tree that contains all possible outcomes because everything is fully determined
Minimize the maximum possible loss
Minimax
Alpha-Beta Pruning

- Prunes away branches that cannot influence the final decision
Alpha - Beta

Computer Turn

Human Turn

Computer Turn

\[\alpha = 0.7 \]
\[\beta = 0.3 \]

\[\alpha = -2 \]
\[\beta = 0.3 \]

\[\geq 0.7 \]

\[0.3 \]

\[0.7 \]

\[\text{don't need to look here} \]
$2^4 \text{ vs. } 2^{250}$
Outline

I. Pre-MCTS Algorithms
II. Monte Carlo Tree Search
III. Applications
Asymmetric Tree Exploration

From *Bandit Algorithms for Tree Search*, Coquelin and Munos, 2007
MCTS Outline

1. Descend through the tree
2. Create new node
3. Simulate
4. Update the tree
Repeat!

5. When you’re out of time,
Return “best” child.

Value = Δ
What do we store?

For game state k:

$n_k = \# \text{ games played involving } k$

$w_{k,p} = \# \text{ games won (by player } p) \text{ that involved } k$
1. Descending

We want to **expand**, but also to **explore**.
1. Descending

Solution: *Upper Confidence Bound*

\[
UCB1(k, p) = E[\text{win}|k, p] + C\sqrt{\frac{2 \ln(n_{\text{parent}(k)})}{n_k}}
\]

At each step, maximize \(UCB1(k, p)\)
2. Expanding

Not very complicated.
Make a new node!
Set $n_k = 0$, $w_k = 0$
3. Simulating

Simulating a real game is hard.

Let’s just play the game out randomly!

If we win, $\Delta = +1$. If we lose or tie, $\Delta = 0$.

```
X  X
O
X  O  O
```

```
X  X  X
O  O
X  O  O
```

```
X  X  X
O  O
X  O  O
```

```
X  X  X
O  O
X  O  O
```

```
X  X
O  O
X  O  O
```

```
X  X
O  O
X  O  O
```

```
X  X
O  O
X  O  O
```

```
X  X
O  O
X  O  O
```

```
X  X
O  O
X  O  O
```

X wins X wins O wins

A lot of options...
4. Updating the Tree

Propagate recursively up the parents.

Given simulation result Δ, for each k:

\[n_{k\text{-new}} = n_{k\text{-old}} + 1 \]
\[w_{k,1\text{-new}} = w_{k,1\text{-old}} + \Delta \]

$\Delta = +1$
5. Terminating

Return the best-ranked first ancestor!

What determines “best”?
- Highest $E[\text{win}|k]$
- Highest $E[\text{win}|k]$ AND most visited
UCB1(k, p) = E[\text{win}|k, p] + C \sqrt{\frac{2 \ln(n_{\text{parent}(k)})}{n_k}}
Why use MCTS?

Pros:
- Grows tree asymmetrically, balancing expansion and exploration
- Depends only on the rules
- Easy to adapt to new games
- Heuristics not required, but can also be integrated
- Can finish on demand, CPU time is proportional to answer quality
- Complete: guaranteed to find a solution given time
- Trivially parallelizable

Cons:
- Can’t handle extreme tree depth
- Requires ease of simulation, massive computation resources
- Relies on random play being “weakly correlated”
- Many variants, need expertise to tune
- Theoretical properties not yet understood
Screenshots of video games removed due to copyright restrictions.
Outline

I. Pre-MCTS Algorithms
II. Monte Carlo Tree Search
III. Applications

... Wait for it...
Part III

Applications
MCTS-based Mario Controller!
MCTS modifications for Super Mario Bros

• Single player

• Multi-simulation

• Domain knowledge

• 5-40ms computation time
Problem Formulation

• Nodes
 • State
 • Mario position, speed, direction, etc
 • Enemy position, speed, direction, etc
 • Location of blocks
 • etc
 • Value

• Edges
 • Mario’s possible action (right, left, jump, etc)
Calculating Simulation Result

Domain Knowledge: multi-objective weighted sum

<table>
<thead>
<tr>
<th>Distance</th>
<th>hiddenBlocks</th>
<th>Flower</th>
<th>killsByStomp</th>
<th>timeLeft</th>
<th>Mushrooms</th>
<th>killsByFire</th>
<th>marioMode</th>
<th>greenMushrooms</th>
<th>killsByShell</th>
<th>Coins</th>
<th>Stomps</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>24</td>
<td>64</td>
<td>12</td>
<td>2</td>
<td>58</td>
<td>4</td>
<td>32</td>
<td>1</td>
<td>17</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Simulation type

Regular

Best of N

Multi-Simulation
Demo
Results

Outperforms Astar
The Rules

• Board is 19x19. Starts empty.

• Players alternate placing one stone.

• Capture enemy stone by surrounding

• A player’s territory is all the area surrounded

• Score = Territory + Captured pieces
<table>
<thead>
<tr>
<th></th>
<th>GO</th>
<th>CHESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Options</td>
<td>250</td>
<td>35</td>
</tr>
<tr>
<td>Turns</td>
<td>150</td>
<td>80</td>
</tr>
<tr>
<td>Games</td>
<td>10^{761}</td>
<td>10^{120}</td>
</tr>
</tbody>
</table>
MCTS modifications for Go

• Combines Neural Networks with MCTS
 • 2 Policy Networks (slow and fast)
 • 1 Value Network
2 Policy Networks

- Input is the game state, as an image
- Output is a probability distribution over legal actions
- Supervised learning on 30 million positions from human expert games

Slow Policy Network
- 57% accuracy
- 3,000 microseconds

Fast Policy Network
- 24% accuracy
- 2 microseconds
Policy Network – Reinforcement Learning

Next step: predict **winning moves**, rather than expert **human moves**

Policy Networks play against themselves!

Tested best Policy Network against Pachi
 - Pachi relies on 100,000 MCTS simulations at each turn
 - AlphaGo’s Policy Network **won 85%** of the games (3ms per turn)
 - Intuition tends to win over long reflection in Go?
Value Network

Trained on positions from the Policy Network’s reinforcement learning

• Similar to evaluation function (as in DeepBlue), but learned rather than designed.

• Predictions get better towards end game
Using Neural Networks with MCTS

Slow Policy Network guides tree search

Value of state = **Fast Policy Network** simulation + **Value Network** Output
Why use Policy and Value Networks?

They work hand-in-hand.

The VN learns from the PN, and the PN is improved by the VN.

• Value Network Alone
 • Would have to exhaustively compare the value of all children
 • PN Predicts the best move, narrows the search space by only considering moves that are most likely victorious

• Policy Network Alone
 • Unable to directly compare nodes in different parts of the tree
 • VN gives estimate of winner as if the game were played according to the PN
 • Values direct later searches towards moves that are actually evaluated to be better
Why *combine* Neural Networks with MCTS?

- **How does MCTS improve a Policy Network?**
 - Recall: MCTS (Pachi) beat the Policy Network in 15% of games
 - Policy Network is just a *prediction*
 - MCTS and Monte-Carlo rollouts help the policy adjust towards moves that are actually evaluated to be good

- **How do Neural Networks improve MCTS?**
 - The Slow Policy more intelligently guides tree exploration
 - The Fast Policy Network more intelligently guides simulations
 - Value Network and Simulation Value are complementary
AlphaGo vs Other AI

Distributed AlphaGo won **77%** of games against single-machine AlphaGo.

Distributed AlphaGo won **100%** of games against other AI.

<table>
<thead>
<tr>
<th>AI name</th>
<th>Elo rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed AlphaGo (2015)</td>
<td>3140</td>
</tr>
<tr>
<td>AlphaGo (2015)</td>
<td>2890</td>
</tr>
<tr>
<td>CrazyStone</td>
<td>1929</td>
</tr>
<tr>
<td>Zen</td>
<td>1888</td>
</tr>
<tr>
<td>Pachi</td>
<td>1298</td>
</tr>
<tr>
<td>Fuego</td>
<td>1148</td>
</tr>
<tr>
<td>GnuGo</td>
<td>431</td>
</tr>
</tbody>
</table>
AlphaGo vs Lee Sedol

AlphaGo

4 wins
3,586 Elo

Lee Sedol

1 win
3,520 Elo

© Reuters. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Only one human with a higher Elo....

Ke Jie (Elo 3,621)
Timeline

• 1952 – computer masters Tic-Tac-Toe
• 1994 – computer master Checkers
• 1997 – IBM’s Deep Blue defeats Garry Kasparov in chess
• 2011 – IBM’s Watson defeats to Jeopardy champions
• 2014 – Google algorithms learn to play Atari games

• 2015 – Wikipedia: “Thus, it is very unlikely that it will be possible to program a reasonably fast algorithm for playing the Go endgame flawlessly, let alone the whole Go game.”

• 2015 – Google’s AlphaGo defeats Fan Hui (2-dan player) in Go
• 2016 – Google’s AlphaGo defeats Lee Sedol 4-1 (9-dan player) in Go
Conclusion

• MCTS expands the search tree based on random sampling of the search space (game board).

References

Mario: http://www.slideshare.net/ssuser7713a0/monte-carlo-tree-search-for-the-super-mario-bros
AlphaGo Summary: https://www.tastehit.com/blog/google-deepmindalphago-how-it-works/
Sample Tree