Military and Commercial Cargo Mission Needs

Presentation to Massachusetts Institute of Technology
Subject 16.886 Air Transportation System Architecting

2/26/04

Blaine K. Rawdon, Boeing Phantom Works
Introduction

• The cargo world attempts to solve a very complex mission (problem)
• This presentation outlines the elements of the problem but does not define a specific mission
• I have been trying to understand this subject for a few years now
 – I may only be a few weeks ahead of you (if that)!
• This presentation is non-linear
 – Requires integration by the student after the fact…
• Military and commercial needs are similar in structure
 – Widely different values
 – Military values very dependent on situation
General Problem

• Object of the game: Devise a goods creation and distribution system that creates greater value than it costs
 – Measure of merit varies
• Elements of the system include:
 – Creation of the goods (manufacturing, mining, farming)
 – Distribution
 – Customers
General Solution

• Provides overall production/transport architecture to maximize an economic measure
• This optimization results in the need for global distribution of goods
 – System seeks a balance between production and transport costs:
 • Low-cost or expert labor
 • Mass production
 • Product type consolidation (cars in Detroit, movies in LA)
 • Farmland
 • Proximity to market
 • Good transport system access
 • Etc
• Production and distribution are a linked system
Transport Problem

• The problem pertains to the distribution of non-human objects (not electronic information)
 – Humans are “self-loading cargo” and are a special case not addressed here
 • Chief difference between people and cargo is that people’s time is generally much more valuable than cargo’s
 – Transoceanic transport:
 » Cargo: 99% ship, 1% air (by weight)
 » People: 1% ship, 99% air (approximately)
 – As a result, cargo systems are much different than passenger systems

• Addressing the transport problem in isolation from production, the object is to obtain the lowest total cost of transport
Total Distribution Cost

• Object of logistics systems is to minimize Total Distribution Cost (TDC)

• TDC is the total cost of transporting goods
 – Sum of cost of transport and cost of holding inventory

• Cost of transport is fees paid to carriers (ship, truck, etc)

• Annual cost of inventory is typically a fraction of the value of the inventory
 – This fraction is called “Inventory Carrying Cost”
 • Typical fraction is 25%, but depends heavily on actual goods, timing
 – Diamonds have low ICC, food has high ICC
 • Consists of interest, depreciation, taxes, insurance, losses, warehouses
Depreciation

- Depreciation is the most powerful and variable factor in ICC
- Depreciation refers to loss of potential value over time
- Depreciation may not be linear at all
 - Seasonal variation
 - If you get the air conditioners in one month late they may be on the shelves for 10 months – very expensive
 - Lots of stuff is seasonal!
 - Spoilage
 - Food is worth less than nothing after it spoils
- Depreciation may pertain to loss of value in the larger system, not just the cargo proper
 - Airplane on ground, factory halted, troops die, etc
- Obsolescence and Hits
 - Rapid technical change can cause high depreciation
 - Michael Dell says his computers depreciate 1%/week!
 - Inability to deliver a hit product will result in a loss of sales
 - Military version of obsolescence and hits pertains to war
 - Value of time can be very, very great in wartime
Cost of Transport

• Cost of transport is split into two parts:
 – Direct operating cost
 – Indirect operating cost
• Direct operating cost pertains to vehicle operation
 – Fuel, crew, vehicle depreciation, maintenance, etc
• Indirect operating cost pertains to other costs
 – Sales, cargo handling, administration, profit, etc
• Sum of direct and indirect operating costs is “cargo rate”
2002 Cargo Rates

Air and Ocean Cargo Rate ($/ton-nm) on Great Circle Basis

- **Aircraft**
 - $0.025/ton-nm + $25/ton
 - ($0.025 + $0.008 per ton-mile @ 3000 nm)

- **Container Ships**
 - $0.18/ton-nm + $450/ton
 - ($0.18 + $0.15 per ton-mile @ 3000 nm)
Comments on Cargo Rates

- Rates decline with range
 - Much of indirect operating cost is independent of range
 - Cargo handling, sales costs don’t depend on range
 - So indirect cost per mile is less at greater ranges
- Ships are much less expensive than airplanes
 - Ships are very efficient: L/D ~400
 - Ships indirect costs are much less than airplane’s
 - Large containers, mechanized loading
- Trend curves can be approximated by a simple formula
 - Rate = cost/ton-nm + cost/ton
 - Cost/nm can be thought of as DOC
 - Fixed cost can be thought of as IOC
- Scatter in rates due to two factors
 - Asymmetrical demand (east versus west for instance)
 - Airplane main deck pays full rate, belly cargo rides for ~IOC,
Total Distribution Cost

\[
TDC = (\text{cargo rate} \times \text{tons} \times \text{nautical miles}) + (\text{time} \times \text{cargo value} \times \text{ICC})
\]

so

\[
\frac{TDC}{\text{ton-nm}} = \text{cargo rate} + \left(\frac{1}{\text{speed}} \times \frac{\text{cargo value}}{\text{pound}} \times \text{ICC} \times 0.2283\right)
\]

Where units are $, tons, nautical miles, knots
Total Distribution Cost

- Plot shows relationship between value, ICC, TDC and speed
 - For three vehicle systems
- Y-intercept is cargo rate, slope is proportional to 1/speed
 - Note that speed is not vehicle speed alone, but entire supply chain speed. Very important!
- Line for WIG is speculative
- Fast, intermediate-cost vehicles can provide lower TDC for some types of goods

Supply Chain

• The “supply chain” refers to all the steps in the transport process in which the goods are “out of service”
 – So ICC applies to all of the inventory in the supply chain
 • In transit
 • Waiting between transport modes
 • At the origin being built up
 • At the destination being broken down
 • In the store until sold
 – An alternate definition of supply chain may include all the time your money is “out of service”
 • Some companies pay for the goods before they are manufactured
Inventory

• Inventory is expensive
 – Typically 25% of value per year

• Inventory performs several functions:
 – Buffer between a relatively steady production and an intermittent transport
 – “Safety stock” to assure an acceptable level of service (acceptable likelihood of delivery)
 • A function of system schedule reliability
 • Also a function of variability and predictability of demand
 – Buffer to connect two asynchronous transport modes
 – Buffer to build inventory sufficient for efficient transport
 • Between transport modes

• There is room for improvement in reducing inventory
 – Perfect knowledge would be a good start
Inventory Drivers

• Frequency of service
 – More frequent service reduces inventory at origin and destination
 – Reduces period between asynchronous transport modes

• Reliability of service from a schedule standpoint
 – Vehicle may be late
 – Vehicle may not be available (full)
 – Reliable service permits reduced safety stock
 • Uncertain ship availability drives shippers crazy

• Variability of demand

• Predictability of demand

• Supply chain architecture
Variability

• Variability in demand influences supply chain architecture
• Variability is roughly proportional to the square root of the quantity involved.
 – Large quantities provide proportionally less variability
 • 10/100 versus 100/10,000 (10% versus 1%)
 – This favors reduced product differentiation, centralized distribution centers
 • However:
 – Customers prefer differentiated products
 – Centralized distribution centers have longer delivery distances

• Architecture must balance quantity, differentiation and distance
 – Compare warehouse store with corner hardware store
 – Compare mail-order with local store
 – Some organizations use different architecture within same system
 • High-value goods centralized, low value goods dispersed
Predictability of Demand

• Suppliers attempt to match supply to demand at optimum price
 – Some architectures force long lead times (time between order and delivery)
 • This reduces predictability since market or competition may change in the meantime
 • Note that lead times can be cumulative
 – Many products are the sum of numerous separate products, sometimes serial

• Market serves as feedback for production
 – Long lag time between production and market feedback reduces precision of control
 • Very expensive mistakes
 • Exacerbated by seasonal aspect – cannot fine-tune over the long run

• Some architectures improve responsiveness despite long supply chains
 – Restaurants: generalized, low-value inventory held until the last moment when custom product is created
 – Dell Computer: same as restaurant
 – Last minute allocation: Mass order on ships, allocated to specific regions or stores just before docking according to present demand
Vehicle Size

- In transport systems, bigger is usually more efficient
 - Ships:
 - Volume/wetted area; Reynolds number; Froude number
 - Faster and more efficient
 - More cargo per crew
 - Airplanes:
 - Volume/wetted area; Reynolds number
 - More cargo per crew
 - Structural penalty of large size (wing bending mostly) is offset by other benefits (compact fuselage)
- However, large size implies lower schedule frequency
 - Optimum system must balance transport cost reduction of larger vehicle with reduced inventory of smaller vehicle
 - Because airplanes generally carry goods with greater value or ICC, they will tend to be smaller than ships
 - As world traffic increases, vehicles tend to increase in size
• Total Distribution Cost is influenced by the number of nodes (ports, distribution centers, stores, etc)
 – Fewer nodes result in more frequent service and/or larger vehicles
• In the case of ships, fewer ports means that the cargo must travel farther on more expensive trucks or trains
 – Number of ports must balance the value of frequent service and larger vehicles with the increased cost of surface transport
 • Casual observation indicates a tendency toward few, major ports
• In the case of airplanes, fewer airports means the cargo must travel farther in slower surface vehicles
 – Must balance value of frequency of service and vehicle size with slower delivery
 – Note that for airliners there are approximately one zillion airports worldwide
 • The number for cargo is much less because cost is more important than time
 – Route structure design can improve schedule frequency by combining loads
• In the case of distribution centers, fewer, larger centers are more efficient and require less safety stock (lower variability), but are farther from their customers
 – Cargo transport into distribution centers is typically less expensive that cargo going out
 • Packaging efficiency, variation due to quantity
• The size and/or number of nodes may increase over time as traffic increases
Supply Chain Speed

• Supply chain speed drives Total Distribution Cost (TDC)
 – More important for goods with high value per pound, high depreciation

• Supply chain speed driven by:
 – Vehicle speed
 – Supply chain architecture
 – Vehicle size

• Optimum supply chain architecture driven by:
 – Vehicle speed, size and cost
 – Value and ICC of goods
 – Distance between origin and destination
Alternative Supply Chain Architectures

Factory to Factory

- **Via ship**: Supply Chain ~5 wks
- **Via air**: Supply Chain ~1 wk

Key:
- → Input/output
- • Inventory
- • Manufacturing
- ▲ Ground transport
- △ Ocean transport
- ▲ Air Transport
Ship Time and Cost Profile
NYC to Rotterdam – a Direct, Best Case Route

Move to back-up
Alternative Supply Chain Architectures

Factory to Store to Customers

- **International**
 - Factories (n) → Loads by product → DC → Loads by store → Stores → Customers
 - ~8 weeks
 - "Store for Stores"
 - ~20 wks

- **Domestic**
 - Factories (n) → DC → Loads by store → Stores → Customers
 - ~6 wks
 - "Cross-Dock"
 - ~3 days

- **Domestic**
 - Factories (n) → Loads by store → DC → Stores → Customers
 - ~3 days
 - "Domestic"
 - ~6 wks
Alternative Supply Chain Architectures

Factory to Store to Customers

- **DC Stores Customers**
 - Loads by store
 - International w/ Foreign DC
 - Loads by product
 - ~4 weeks
 - “Store for Stores”
 - ~10 wks (0 hrs from order)

- **International w/ Foreign Cross Dock**
 - Loads by store
 - ~3 days Cross-Dock at airport
 - Loads by product
 - Factories (n)
 - ~6 wks (0 hrs from order)
Alternative Supply Chain Architectures

Restaurant / Dell Computer Model

Restaurant
-Loads by ingredient
- Fridge
- Kitchen
- Customers
- Factory (n)
- ~1 week?
- Low-value inventory
- ~2 wks? (~30 minutes from order)

Dell Computer Model
- Loads by component
- “Fridge”
- ~3 wks? (4 days from order?)
- Factory (n)
- ~1 week?
- Lower-value inventory

- Restaurant
- Dell Computer Model
Alternative Supply Chain Architectures

Offshore Dell Computer Model

Loads by component

Factories (n)

“Fridge”

~3 wks? (5 days from order?)

~1 week?

Lower-value inventory

Offshore Dell Computer Model
Alternative Supply Chain Architectures

Foreign Cars

Foreign Cars w/ DC

Factory → General, speculative load → DC → Loads by dealer
→ Customers

2 weeks?
“Car lot for dealers”

~8 wks?
Can be 0, 1, or 10 weeks from order

Foreign Cars w/o DC

Factory → Load per dealer’s order → Dealer → Customers

~6 wks?
Can be 0 or 8 wks from order
Alternative Supply Chain Architectures
Foreign Cars, Global “Mail” Order

Foreign Cars Built to Order

Customer's order

~1 wk? (~2 wk from order?)

Consumer Goods from Manufacturers Inventory

~1 wk (~1 wk from order)
Some Observations

• The value of speed comes from:
 – Reduced time in transit
 – The ability to reorganize architecture

• It’s not just the long trip that hurts. It’s also the slow feedback loop.
 – Between demand and supply
 – Seasonal or time-sensitive demand exacerbates this

• Fast transit can tighten the feedback loop

• Fast transit can permit customer to obtain goods from greater distance with acceptable delay
 – Global mail-order
More Observations

• It used to be that one went to a store or show to obtain information about goods
 – Information now flows for free via Internet
 • Often one can find better info on web than in store
 • This supports global mail order

• It may be that the best architecture combines more than one system
 – Slow and cheap plus fast, responsive and expensive
 • The tweeter has less throw than the bass speaker
How to Determine Cargo Mission Needs

• Examine current production/transport/customer system in a field of interest.
 – Evaluate value and ICC of goods, cost of system

• Generate alternative system architectures
 – Include production, transport and customer characteristics
 • Generate alternative transport vehicles

• Evaluate alternative system architectures
 – Primarily against total economic performance
 – Consider applications of the architecture beyond your chosen field, especially for the vehicle
 – Consider the future
 – Consider what competition can do to you

• Choose the best one
 – This defines your mission
Some Potential Systems of Interest

• Military deployment
 – Currently performed with transport and tanker airplanes, ships, dispersed US bases, prepositioned materiel, forward bases and ports, etc

• Transport of food
 – Elements to consider:
 • Wealthy northern hemisphere, poorer southern; offset seasons
 • Perishability, seasonality increase ICC

• Factory to factory
 – Serial buildup of lead times

• Car manufacture and delivery
 – Current system appears to have large inventories, is seasonal
 – Global manufacture may cause serial buildup of lead times
 • Design, tooling, components, assembly, delivery
 • Leads to over or under production, less advanced products
More Potential Systems of Interest

• Manufacture and delivery of consumer products
 – Currently a wide mix of system architectures

• What about housing?
 – Can you make houses in China and put them up in Kansas?

• What about health services?
 – Can you have a roving specialist (or general) hospital?
 • Example is Orbis, an eyesight hospital in a DC-10
Cargo Airplanes

- I suspect that your analysis will show that cargo airplanes have a substantially different mission than passenger airplanes.
- In the past, commercial cargo airplanes were derived from airliners to save development cost.
 - It may be now that the cargo market can support a purpose-built cargo airplane.
- Your analysis may show that a low cargo rate is more important than speed.
 - This requires an emphasis on low DOC and IOC.
 - Note that speed is good for productivity and therefore DOC.
- What airplane type provides the lowest cargo rate?
Questions?