Problem set 2 due today.
For next week: we’ll be doing Chapter 8 of Brock
Exam in a week and a half

- Slide: Central Dogma
 - Replication, Transcription, Translation
 - Reverse transcription sometimes

- Slide: Flow of information
 - Right now we’re just thinking about information flow within an individual species – how nucleic acid information flow occurs
 - How you maintain fidelity and copy your DNA for all your daughter cells

- What we know about DNA:
 - The four bases
 - The ring system of the sugar
 - The number of carbons
 - How you tell the difference between DNA and RNA (the lack of oxygen)
 - The nomenclature of the bases
 - Alternating linkage (3’ and 5’)
 - The base pairing (G-C, A-T) – This is how it replicates with such high fidelity.
 - Anti-parallel (5’ → 3’, 3’ → 5’)
 - When the structure was first determined, the pairing was inferred, but the method of replication wasn’t clear
 - It could have been Semiconservative, Conservative, or Random Dispersive.
 - These different methods incorporate the mother strands into the daughter strands in different ways.
 - To determine this, they added 15N labels experimentally – they could predict the densities resulting from each replication method – heavy vs. light
 - The Conclusion, of course, was that it was semiconservative.
 - The replication process is not simple, and involves a lot of enzymes.
 - Polymerase III can’t just set down on a DNA strand – it needs a DNA primer. That primer is then used to extend the DNA strand.
 - This means that initially it’s not just a DNA strand – it’s a DNA-RNA hybrid.
 - The DNA polymerase synthesizes 5’ → 3’. This means that one strand goes more easily than the other strand. The leading strand goes directly, but the lagging strand develops a lot of smaller fragments – these are called Okazaki fragments (about 1000 bases
DNA polymerase I (not III) is used on the lagging strand, so that it will eat through the extra primers (polymerase I would stop).

- An RNA primer is laid down by a primase.
- The primers have to be removed.
- Nicks have to be removed by DNA ligase.
- With a circular DNA, the replication happens circularly (a bubble opens up between the strands, and replication happens there).
 - This is generally what happens with prokaryotes.
 - But there are also some that have linear DNA.

- Regulatory Pathways in prokaryotes – the larger topic of today’s lecture.
 - The more important means of cell regulation is transcription.

- Prokaryotic transcription
 - DNA is more stable than RNA, while RNA can be turned over and used faster than DNA.
 - The 2’ hydroxy group of RNA is useful here.
 - RNA polymerase does not need a primer – it just transcribes directly.
 - Halfway through the sigma factor falls off.
 - Pribnow box and -35 region.
 - Some bases are more highly conserved than others. Also, some organisms are more GC-rich than others.
 - There are different types of sigma factors
 - Sigma 70 – kind of the vanilla flavor – used for “normal” promoters
 - Sigma 32 is used for heat-shock promoters
 - Sigma 54 is used for N limitation promoters
 - There’s a modularity in how cells can turn on all kinds of different genes.
 - Strong versus weak promoters.
 - Initially RNA polymerase binds, the strand is opened up, and transcription begins.
 - Transcription termination
 - Inverted repeats – these connect to each other, stopping transcription, and they require no extra factors.
 - Row dependent terminations – require extra proteins
 - There are other sorts as well

- Differences between eukaryotic and prokaryotic transcription
 - Archaea are very different from bacteria – they do it more like eukaryotes.
 - Eukaryotes do not have classical operons
 - Eukaryotic mRNAs are usually sliced, capped, and tailed, in the nucleus
 - RNA polymerase structure/function differ
 - Initiation complexes differ
 - These differences make good targets for antibiotics
 - Translation – prokaryotes are better in terms of rapid response – transcription and translation happen next to each other – they are coupled.
 In eukaryotes, one is in the nucleus, the other in the cytoplasm.
- Overview of Prokaryotic Translation
 - Slide: simple structure of a prokaryotic gene
 - Maintaining high enough fidelity for translation is really remarkable
 - Shine-Dalgarno sequence
 - The genetic code has been inferred from lots of different experiments – which codons code for which amino acids
 - How this code could have occurred is really remarkable
 - Originally it was assumed to be random, in the 1960s, but this doesn’t seem to be the case, because it seems like there is some order to the groupings.
 - Nobody really knows how it developed yet though.
 - Transfer RNAs
 - The early experiments that discovered how this works were really remarkable
 - The Genetic code is degenerate (meaning that multiple codons can code for the same amino acid).
 - Sometimes there is a bias (in once cell, for example, UUU might be used for phenylalanine more often than UUC is used)
 - Codon families exist.
 - Also codon pairs.
 - Staying in the correct frame is critical.
 - The code is not absolutely hard and fast:
 - Recently selenocysteine and pyrrolysine have been dubbed the 21st and 22nd amino acids
 - Previously people had thought that the Selenium in Selenocysteine was added later, but this is incorrect. It has its own codon (UGA – normally nonsense/stop codon!) and transfer RNA.
 - For pyrrolysine, it looks like a similar mechanism, although it’s not yet absolutely hard and fast. (UAG codon)
 - The tRNA has to be very well matched (very specific covalent bond).
 - Aminoacyl-tRNA Synthetase recognizes both the amino acid and the tRNA.
 - It’s a two-step reaction.
 - Anticodon loop and acceptor stem of the tRNA are both involved.
 - Messenger RNAs are very labile – they turn over on the order of minutes in the cells, getting eaten up by nucleases. Other RNAs are more stable.
 - Drugs that inhibit translation: there are a whole series of antibiotics that inhibit bacterial translation without touching eukaryotic translation.
 - Initiation
 - 50S
 - 30S
 - Shine-Delgarno
 - Elongation
 - Movement of ribosome along the strand.
- After peptide bond formation, there’s a new empty site, and the ribosome moves along so that the chain grows.
- Incredible that the ribosome can do this with such high fidelity.
 - Ribozymes are catalytic RNAs