20.201 Mechanisms of Drug Action

Uptake and Distribution

Pharmacokinetics

October 9, 2013
Review and Agenda

• Covered significant portions of ADMET
 A ~ Uptake = absorption
 D ~ Distribution
 M ~ Metabolism - Tannenbaum
 E ~ Elimination
 T ~ Toxicology - Wright, Tannenbaum

{ Transporters - Hoffmaster

• Pharmacokinetics was defined as 1/2 of pharmacology:
 ~ “Pharmacokinetics” - getting to the target
 ~ “Pharmacodynamics” - action at the target

• Now look at pharmacokinetics in a more practical, quantitative sense
Things to learn today

• Volume of distribution
• Portal circulation/Hepatic extraction
• Fluid compartments
• Protein binding concepts and constants
• Drug-drug interactions due to protein binding
• Routes of administration
• Bioavailability/bioequivalence
• Area under the plasma concentration-time curve
• Zero-, first-, second-order kinetics
• Plasma half-life
• Clearance
• Pharmacokinetic models – one-, two-, multi-compartment
• Dosing calculations
Once absorbed, a drug molecule is subject to distribution throughout body by the circulatory system.

- Major concepts of drug distribution
 - portal circulation
 - plasma protein binding
 - fluid compartments
 - Volume of Distribution (V_d)
Drug Distribution

• Unique circulatory system for intestines and liver: portal circulation

• Venous outflow from GI tract (lower stomach, small intestine, upper colon) enters portal vein

• Portal vein enters liver and branches as capillaries to deliver blood to hepatocytes

• 80% of blood entering liver from portal vein; 20% from hepatic artery

• Net result: orally administered drugs must pass through the liver before entering circulation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Drug Distribution

- **Hepatic extraction**: degree to which drug is removed from blood on each pass through the liver

 - Example: 63% of *rosuvastatin* is "captured" by liver on each pass

- **First-pass metabolism**: degree to which a drug is metabolized on first pass through liver in portal circulation

 - Example: *nitroglycerin* for angina

- >90% first-pass metabolism demands alternate route for administration

- Sublingual and rectal routes: venous absorption leads to systemic circulation and bypasses liver

Nitroglycerin ADME

- $V_d \sim 200$ L
- $t_{1/2} \sim 1-4$ min
- Metabolism: 1,3- & 1,2-dinitroglycerol (active, $t_{1/2}$ 3-4 hr); 2 inactive mets.

 - 60% protein bound
 - Renal excretion of parent, metabolites
Apparent Volume of Distribution (V_d)

- *Hypothetical volume into which the drug is dissolved or distributed*

 \[V_d = \frac{\text{total amount of drug}}{\text{plasma concentration}} = \frac{\text{Dose}}{C_{p0}} \]

- Limited physical interpretation but useful concept to understand water compartments and gross physicochemical properties of drug

- Affected by: plasma protein binding, binding in tissues, lipid solubility, etc.

- *Lipid soluble drugs have a high apparent volume of distribution*

- Concept of V_d reflects fluid compartments
 - Total body water is ~ 60% of mass
 - Three fluid compartments:
 - blood
 - interstitial
 - intracellular
 - Epithelial barriers

- V_d's often reflect real fluid compartments

Blood ~8% (5-6 l)
plasma ~5% (3-4 l)
cells ~3%

Interstitial water ~15% (10-11 l)
Intracellular water ~40% (20-25 l)
Blood ~8% (5-6 l)
Plasma ~5% (3-4 l)
Cells ~3%

Interstitial water ~15% (10-11 l)

Extracellular / non-marking return ~20% (13-15 l)

Intracellular water ~40% (20-25 l)

(calculation based on 70 kg male)
Amoxicillin
$V_d \sim 20 \text{ L}$
Partition Coefficient
$(\text{Octanol}/\text{H}_2\text{O}) = 0.03$

Blood and interstitial fluids

<table>
<thead>
<tr>
<th>Drug</th>
<th>V (L/Kg)</th>
<th>V (L, 70 Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulfisoxazole</td>
<td>0.16</td>
<td>11</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.3</td>
<td>20</td>
</tr>
<tr>
<td>Phenobarbital</td>
<td>0.55</td>
<td>38</td>
</tr>
<tr>
<td>Phenytoin</td>
<td>0.63</td>
<td>44</td>
</tr>
<tr>
<td>Diazepam</td>
<td>2.4</td>
<td>168</td>
</tr>
<tr>
<td>Digoxin</td>
<td>7</td>
<td>490</td>
</tr>
<tr>
<td>Chloroquine</td>
<td>>100</td>
<td>$>10^4$</td>
</tr>
</tbody>
</table>

Digoxin
$V_d \sim 490 \text{ L}$
Partition Coefficient
$(\text{Octanol}/\text{H}_2\text{O}) = 18.4$

Chloroquine
$V_d \sim >10^4 \text{ L}$
Partition Coefficient
$(\text{Octanol}/\text{H}_2\text{O}) = 52,000$
Fat depot!
Concepts of distribution: Protein binding

• Binding of drugs to proteins in blood is a major determinant of PKs and a source of toxic drug-drug interaction

• Binding generally depends on charge and water solubility: hydrophobic drugs bind to hydrophobic pockets in serum proteins

• Importance of protein binding:
 ~ "active" drug = unbound drug = can bind to target
 ~ binding affects concentration of "active" drug at the site of action
 ~ wide variation in serum protein concentrations in different diseases
 ~ drug-drug interactions can involve competition for protein binding
 ~ "bumping" a drug off of protein increases its unbound concentration
Concepts of distribution: Protein binding

- Focus on two critical serum proteins:
 - ~ albumin
 - ~ α1-acid glycoprotein
- Fundamental binding isotherm quantifies binding affinity

<table>
<thead>
<tr>
<th>Proteins in serum</th>
<th>Molecule</th>
<th>KDa</th>
<th>G/dL</th>
<th>μM</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Albumin</td>
<td>66.5</td>
<td>4.5</td>
<td>670</td>
<td>Chemic. trans., oncotic press.</td>
</tr>
<tr>
<td>Globulins</td>
<td>Immunoglobulins (IgG)</td>
<td>150</td>
<td>1.5-2</td>
<td>130</td>
<td>Humoral immunity</td>
</tr>
<tr>
<td></td>
<td>Lipoprotein</td>
<td></td>
<td></td>
<td></td>
<td>Lipid and chemical transport</td>
</tr>
<tr>
<td></td>
<td>Transferrin</td>
<td>79</td>
<td>0.2</td>
<td>17</td>
<td>Iron transport</td>
</tr>
<tr>
<td></td>
<td>Ceruloplasmin</td>
<td>150</td>
<td>0.3</td>
<td>20</td>
<td>Copper transport</td>
</tr>
<tr>
<td></td>
<td>Haptoglobin</td>
<td></td>
<td></td>
<td></td>
<td>Binds to hemoglobin</td>
</tr>
<tr>
<td></td>
<td>Steroid-binding globul.</td>
<td>53</td>
<td>0.05</td>
<td>0.8</td>
<td>Transport of steroid hormones</td>
</tr>
<tr>
<td></td>
<td>Thyroid-binding globul.</td>
<td></td>
<td></td>
<td></td>
<td>Transport of thyroxin</td>
</tr>
<tr>
<td></td>
<td>Macroglobulins</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>α1-Acid glycoprotein</td>
<td>42</td>
<td>0.4-1</td>
<td>9</td>
<td>Acute phase reactant, chem. trans.</td>
</tr>
<tr>
<td></td>
<td>Fibrinogen</td>
<td>400</td>
<td>0.5</td>
<td>12</td>
<td>Clot formation</td>
</tr>
<tr>
<td></td>
<td>Complement proteins</td>
<td></td>
<td></td>
<td></td>
<td>Immune function</td>
</tr>
</tbody>
</table>

![Graph of binding isotherm]

\[r = \frac{[XR]}{[XR] + [R]_{free}} = \frac{nK_a[X]_{free}}{1 + K_a[X]_{free}} \]

\[r = 0.5 \Rightarrow [R]_{free} = [RX] \]

\[r = 0.5 \Rightarrow K_a = \frac{1}{[X]_{free}} \]
Serum albumin as a drug transport protein

• Most abundant protein in plasma, most important protein for drug

• Member of a protein family
 ~ α-fetoprotein, vit. D binding protein
 ~ 3 heart-shaped domains
 ~ most drugs bind subdomains IIA, IIIA
 ~ IIA and IIIA have hydrophobic pocket
 ~ I lacks hydrophobic pocket

• Endogenous ligands: fatty acids, bilirubin, steroids, NO, metals

• Drug binding
 ~ Most drugs bound less tightly than endogenous chemicals:
 ~ 1-4 primary/high-affinity binding sites; many weaker/nonspecific binding sites

<table>
<thead>
<tr>
<th>Chemical</th>
<th>K_a, M$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>bilirubin</td>
<td>10^8</td>
</tr>
<tr>
<td>oleate</td>
<td>10^8</td>
</tr>
<tr>
<td>Ca$^{+2}$</td>
<td>10^2</td>
</tr>
<tr>
<td>drugs</td>
<td>10^4-10^6</td>
</tr>
</tbody>
</table>

Concepts of distribution: Protein binding

- **Bound drugs can be displaced by competition**
- Competition by endogenous ligands or other drugs
- Net result: increase in the unbound/free concentration of a drug
- Danger for drugs with narrow TI!
 - ~ Digitoxin (compare to digoxin)
 - ~ Warfarin

Drug

- Digitoxin ~95% bound
- Digoxin ~20% bound
- Atenolol, Lithium
- Amoxicillin
- Digoxin
- Gentamicin
- Penicillin G
- Theophylline
- Phenobarbital
- Carbamazepine
- Quinidine
- Verapamil
- Phenytoin
- Tolbutamide, Diazoxide
- Propranolol, Furosemide
- Nifedipine
- Digitoxin
- Oxazepam
- Ketoprofen
- Diazepam
- Warfarin
- Phenylbutazone
- Naproxen
- Dicumarol

Unbound ($f_u \times 100$)

0.1

0.2

0.5

1

2

5

10

20

50

100

- **Danger!**
Consequences of altered protein binding in disease

• **Propranolol**: β-adrenergic receptor antagonist used to treat hypertension, tachyarrythmias, migraine

• Bound extensively to α-acid glycoprotein: cationic charge

• What happens to the level of drug binding when the protein level is altered by disease?

\[
K_a = \frac{[X]_b}{[X]_f \cdot [P]_f}
\]

Binding of drug X to protein P

\[
f_u = \frac{[X]_f}{[X]_f + [X]_b} = \frac{[X]_f}{[X]_t}
\]

\[
(1 - f_u) \cdot [X]_t = [X]_b
\]

\[
f_u = \text{Fraction of drug unbound}
\]

\[
f_p = \frac{[P]_f}{[P]_t}
\]

\[
f_p = \text{Fraction of protein unoccupied}
\]

Free concentration of drug depends on binding constant, concentration of unoccupied binding sites on protein, and protein concentration

• In general, \(f_p \approx 1 \): most sites are unoccupied

Thus, concentration of free drug depends on protein concentration and is relatively constant at different drug concentrations (steep part of binding isotherm)

Consequences of altered protein binding in disease

- **Propranolol**: β-adrenergic receptor antagonist used to treat hypertension, tachyarrhythmias, migraine

- Bound extensively to α-acid glycoprotein: cationic charge

- The level of α-acid glycoprotein changes as a function of inflammation and disease (*acute phase reactant*)

- A reduction in the level of the protein leads to an increase in the proportion of unbound drug

© Lea & Febiger. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
• Two drugs bind to albumin with the following dissociation constants:

\[
\begin{align*}
\text{Drug A} & \\
K_d & \sim 1 \text{ pM} \\
\text{Drug B} & \\
K_d & \sim 1 \mu\text{M}
\end{align*}
\]

• Which drug has a higher affinity for albumin?

• Which drug would be displaced by bilirubin, which has a \(K_d \sim 10 \text{ nM}\)
Pharmacokinetics and the Fate of Drugs in the Body

- **Definition of Pharmacokinetics/Toxicokinetics**: quantitative temporal analysis of the processes of ADME; how much of and how fast the drug reaches its target

- **Compare to pharmacodynamics**: mechanism by which a chemical or agent exerts its effects (e.g., binding to receptor, interfering with cell wall formation)

- **Applications in pharmacology**: determine how often to administer a drug to maintain therapeutic concentration

- **Applications in toxicology**: define the association between exposure and the progression of disease

- **Approaches to pharmacokinetic analysis**:
 - Simple compartment models
 - Physiologically-based pharmacokinetic models (PBPK)
Paradigm for Pharmacokinetics Concepts

Route of Administration

Absorption k_{abs}

Blood/Plasma

K_{elim}

Route of Elimination

Metabolism k_{met}

Distribution k_{dist}

Liver

Tissues

Target

Bile
Routes of administration and absorption

• Already looked at mechanisms of absorption

• Now look at quantifying the kinetics of absorption

• Rates of absorption dictated by route of administration:
 ~ Enteral vs parenteral
 ~ Vascular vs extravascular

• **Enteral routes**
 ~ Oral - portal!
 ~ Sublingual - bypass portal
 ~ Rectal - bypass portal

• **Parenteral routes**
 ~ Intravenous (iv)
 ~ Intramuscular (im)
 ~ Subcutaneous (sc)
 ~ Topical/transdermal
 ~ Inhalation/nasal
 ~ Ocular
Factors affecting absorption from site of administration

• Quantitative aspects of absorption are important for GI, lung and topical routes

• Transport
 ~ diffusion - not saturable
 ~ active, facilitated; saturable

• pH effects
 ~ charge affects transport/diffusion
 ~ pH stomach ~ 2; tissue pH ~6.5-8

• Physical factors at the site of absorption
 ~ blood flow
 ~ surface area
 - lungs 140 m²
 - skin 1.5-2 m²
 - GI tract 300 m² (small intestine)
 ~ contact time
Quantifying absorption: Bioavailability

• Concept of **AUC**:
 ~ area under plasma concentration vs time curve
 ~ measure of the total quantity of drug entering the general circulation

• **Bioavailability**
 ~ defined as fraction \(F \) of administered drug entering general circulation
 ~ calculate as plasma \(\text{AUC}_{\text{oral}} / \text{AUC}_{\text{IV}} \)

• Determinants of bioavailability
 ~ Formulation (salt form, particle size, excipients) affects rate of dissolution
 ~ Chemical stability - E.g. penicillin unstable at acid pH of stomach
 ~ Hepatic extraction - E.g. nitroglycerin has >90% 1st pass metabolism

• **Bioequivalence** - relative bioavailability of two drugs

\[
F = \frac{\text{AUC}_{\text{ev}}}{\text{AUC}_{\text{iv}}}
\]

© Lea & Febiger. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

- 500 mg of a drug administered IM and orally to same subject
- Quantify [drug] in plasma vs time

<table>
<thead>
<tr>
<th>Route</th>
<th>AUC ((\text{mg} \cdot \text{hr}/\text{L}))</th>
<th>(t_{1/2}) decay phase ((\text{min}))</th>
<th>Cumul. Excret. ((\text{mg}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>7.6</td>
<td>190</td>
<td>152</td>
</tr>
<tr>
<td>IM</td>
<td>7.4</td>
<td>185</td>
<td>147</td>
</tr>
<tr>
<td>Oral</td>
<td>3.5</td>
<td>193</td>
<td>70</td>
</tr>
</tbody>
</table>

EXERCISE
Basic Kinetics

• Use elements of chemical kinetics to develop pharmacokinetic concepts

• Basic rate law for a reaction in which molecule A is converted to molecule B:

\[A \rightarrow B \quad -\frac{dA}{dt} = \frac{dB}{dt} = k \cdot [A]^n \]

Zero-order kinetics: n = 0

~ \(-dA/dt = k\cdot [A]^n\) becomes \(-dA/dt = k\cdot 1\)

~ Rearrange and integrate rate equation:

\[
\int -dA = k \cdot dt
\]

\[
[A]_t = -k \cdot t + C \\
 t = 0 \Rightarrow C = [A]_0
\]

\[
[A]_t = -k \cdot t + [A]_0
\]

~ Rate of the reaction is independent of substrate concentration

~ Rate constant k has units of concentration per unit time

~ Concentration versus time plot is linear
Basic Kinetics

- **First-order kinetics: n = 1**

 \(-\frac{dA}{dt} = k \cdot [A]^n\) becomes \(-\frac{dA}{dt} = k \cdot [A]\)

 \(\int -\frac{dA}{[A]_t} = k \cdot dt\)

 \(\ln([A]_t) = -k \cdot t + C\) \(t = 0 \Rightarrow C = \ln([A]_0)\)

 \(\ln([A]_t) = -k \cdot t + \ln([A]_0)\)

 \(\ln\left(\frac{[A]_t}{[A]_0}\right) = -k \cdot t\)

 \([A]_t = [A]_0 e^{-kt}\)

- Rate of the reaction is **dependent on substrate concentration**

- Rate constant \(k\) has **units of reciprocal time**

- \(\ln[A]\) vs. time plot is **linear**
Basic Kinetics

- **Half-life** - fundamental pharmacokinetic concept and parameter
 - Definition: time to decrease concentration by one-half
 - Define mathematically by setting $[A]_t = [A]_0/2$

\[
\ln\left(\frac{[A]_t}{[A]_0}\right) = \ln(0.5) = -0.693 = -k \cdot t
\]

\[
t_{1/2} = \frac{0.693}{k}
\]
Basic Kinetics: Processes subject to zero-order kinetics

• “Saturable” processes: ligand molecules completely occupy available binding sites

• Metabolic enzymes
 ~ *Aspirin* - glycine conjugation and phenolic glucuronidation
 ~ *Ethanol* - alcohol/aldehyde dehydrogenase
 ~ *Phenytoin* - CYP2C9; \(K_m \approx 5 \text{ mg/L} \); therapeutic range 10-20 mg/L

• Transporters: *glucose transporter* in renal tubule
 (filtered [glucose] > 320 ng/min)

• Mathematical basis for zero-order kinetics

 ~ Michaelis-Menten rate equation considerations:

\[
V = \frac{dP}{dt} = \frac{V_{max} \cdot [S]}{K_m + [S]} \quad V = \frac{dP}{dt} = \frac{V_{max} \cdot [S]}{K_m + [S]} \approx \frac{V_{max} \cdot [S]}{[S]} = V_{max}
\]

~ When \([S] \gg K_m\), all substrate binding sites occupied and enzyme operates at \(V_{max}\)
Basic Kinetics: Processes subject to first-order kinetics

• Definition of a first-order process: a reaction or activity, the rate of which depends on the concentration of reactants or the chemical of interest

• Most processes of absorption, distribution, metabolism, elimination are first-order

• Diffusion: Rate of diffusion depends on the concentration gradient (i.e., the concentration of the "reactant")

\[- \frac{dQ}{dt} = P \cdot A \cdot \Delta C\]

• Metabolism and transport proteins: Enzyme kinetics generally first-order, except under conditions of substrate saturation:

\[\frac{d[\text{Product}]}{dt} = V = \frac{V_{\text{max}} \cdot [S]}{K_m + [S]}\]

when \(K_m \gg [S]\), then
\[\frac{d[\text{Product}]}{dt} = V = \frac{V_{\text{max}} \cdot [S]}{K_m} = k_{\text{met}} \cdot [S]\]
Concept of clearance

- **Clearance (Cl):** rate of removal of a chemical from any compartment (blood, tissue, entire body) by any process (metabolism, excretion, distribution to another tissue, etc.)

- Whole body or systemic Cl is sum of other Cl's: \(\text{Cl}_s = \text{Cl}_{\text{hepatic}} + \text{Cl}_{\text{renal}} + \text{Cl}_{\text{other}} \)

- Physical interpretation: volume of blood/tissue "cleared" of chemical per min
 Example: \(\text{Cl} = 100 \text{ ml/min} \) \(\Rightarrow \) chemical removed from 100 ml of blood/min

- Mathematical definitions:
 \[
 \text{CL} = k_{\text{el}} \cdot V_d
 \]
 where \(k_{\text{el}} \) is the first-order rate constant for elimination of a chemical from the blood or tissue; \(V_d \) is the apparent volume of distribution of the chemical

 \[
 \text{CL} = \frac{\text{Dose}}{\text{AUC}_0^\infty}
 \]
 where AUC over the time period \(t = 0 \) to \(t = \infty \)

 \[
 \text{CL}_{\text{organ}} = Q \left(\frac{C_A - C_V}{C_A} \right) = Q \cdot E
 \]
 where \(Q \) is blood flow to the organ, \(C_A \) is the arterial blood concentration, \(C_V \) is the venous blood conc. and \(E \) is the extraction ratio

- **Intrinsic clearance (Clint):** the contribution of metabolism to the overall clearance associated with an organ; \(\text{CL}_{\text{int}} \) is independent of blood flow
Pharmacokinetic Models

• Build an understanding of PK’S with simple models

• More complicated physiologically-based models combine many simple models

• **Single compartment with I.V. injection and first-order elimination**

 ~ Consider the body as a "box" with blood as the **sampling compartment**
 ~ Rapid injection and presumed rapid (“instantaneous”) distribution
 ~ Obtain blood sample and quantify drug as a function of time
 ~ **First-order** - linear plot of ln(plasma concentration) vs time
 ~ The rate constant, k, is now the **elimination rate constant**, k_{el}
 ~ Plasma half-life = $0.693/k_{el}$

• Loss of drug from plasma due to metabolism, excretion, distribution to tissue…

\[
\ln([D]_p) = -k_{el} \cdot t + \ln([D]_{p \mid t=0})
\]

Already wrote and solved the mass balance differential equation!
Pharmacokinetic Models

- Single compartment with absorption from gut and first-order elimination

 - Factor in kinetics of absorption with kinetics of elimination from blood
 - Distribution is no longer instantaneous
 - Assume first-order absorption from gut (why?)
 - Write rate equation that accounts for 1° absorption and 1° elimination

\[
\frac{d[D]_p}{dt} = k_{abs} [D]_{gut} - k_{el} [D]_p
\]

\[
\frac{d[D]_p}{dt} = k_{abs} [D]_{gut} - k_{el} [D]_p = k_{abs} \left([D]_{gut0} e^{-k_{abs}t} \right) - k_{el} [D]_p
\]

Integrate ⇒ \([D]_p(t) = [D]_{gut0} \left(\frac{k_{abs}}{k_{abs} - k_{el}} \right) \left(e^{-k_{el}t} - e^{-k_{abs}t} \right)\)

- As drug absorbed from gut, \(e^{-k_{abs}t}\) goes to zero and \([D]_p\) dominated by \(k_{el}\)
Pharmacokinetic Models

- **Two compartments with I.V. injection and first-order elimination**
 - Rate equation now has 3 terms
 - Injected drug distributes in blood compartment “instantaneously”
 - Observe two "phases"
 - Rapid movement of drug out of blood into tissue compartment
 - Slower phase: as plasma concentration falls below tissue concentration, drug moves into blood

\[
d \frac{[D]_p}{dt} = k_{21}[D]_{tis} - k_{12}[D]_p - k_{el}[D]_p
\]

Integrate \(\Rightarrow [D]_{p,t} = Ae^{-\alpha t} + Be^{-\beta t} \)

\[
\alpha + \beta = k_{12} + k_{21} + k_{el}
\]

\[
\alpha \cdot \beta = k_{21} \cdot k_{el}
\]

\[
A = [D]_{p0} \left(\frac{\alpha - k_{21}}{\alpha - \beta} \right)
\]

\[
B = [D]_{p0} \left(\frac{k_{21} - \beta}{\alpha - \beta} \right)
\]
Pharmacokinetic Models

• Correlate single- and multi-compartment models

 ~ Graph of $[D]_t$ vs. time for the tissue compartment of a 2-compartment model is identical to graph of 1 compartment model with 1° absorption and 1° elimination

 ~ $k_{\text{abs}} = k_{12}$ and $k_{\text{el}} = k_{21}$

 ~ Easy: string together single compartment models for each entry and exit component, solve ordinary differential equations (Physiologically-based PK models; PBPK)

 ~ Don’t hassle with the complexity of ≥ 2 compartment models
Pharmacokinetics of Multiple Doses

- Need to determine how frequently to give a drug so that we maintain blood concentration in the therapeutic range and below the toxic range

- Define the concept of steady-state concentration of drug in blood (C_{ss}):
 ~ balance of rates: dosing, absorption, elimination
 ~ reach a state in which drug concentration fluctuates within a narrow window

- Achieve C_{ss} after ~4 half-lives

- First example with constant infusion:

$$C_t = \left(\frac{k_{inf}}{Cl}\right)\left(1 - e^{-k_{el} \cdot t}\right)$$

$$C_{ss} = \frac{C_t}{\frac{1 - (0.5)^{\left(t / t_{1/2}\right)}}{}} = \frac{k_{inf}}{k_{el} \cdot V_d}$$

- k_{inf} = rate of infusion
- k_{el} = elimination rate constant
- C_{ss} = steady-state concentration (mg/mL)
- C_t = concentration at time = t
- t = time
- $t_{1/2}$ = half-life

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.
Pharmacokinetics of Multiple Doses

- Consider the case of multiple daily doses
- Now see saw-tooth drug concentration profile due to peak and trough fluctuation
- Simply string together 1° abs/1° elim graphs
- Achieve C_{ss} after ~4 half-lives: quantify average $[D]_p$ at $t > 4 \times t_{1/2}$

C_{ss} usually attained at $\sim 4 \times t_{1/2}$

$C_{ss} = \frac{F \cdot \text{dose}}{CL \cdot T} = \frac{F \cdot \text{dose}}{k_{el} \cdot V_d \cdot T}$

$C_{ss} =$ steady-state concentration (mg/mL)
$F =$ fractional bioavailability
$CL =$ blood clearance (mL/min)
$T =$ dosage interval (min)
Dose in mg
Pharmacokinetics Web Sites

• Excellent web site for pharmacokinetics: http://www.boomer.org/c/p1/index.html

• JAVA calculator for plotting blood concentrations approaching steady-state: http://www.boomer.org/c/p1/Ch15/Fig57/Fig57.html