FJC: freely jointed chain

Thermodynamics

- Free energy $A = U - TS$ (fixed N, V, T)
- Want to maximize S: purely entropic reasoning
 - $U = 0$ for all configurations (assumption)
 - No penalty for bending or crossing

Single link point of view

- b_i: orientation of link i
- \mathbf{b}_i: orientation vector of link i
- $r_{\mathbf{i}}$: end-to-end vector

Sample configuration (microstate)

- R: end-to-end vector
- Measure of coil size

Statistics of a random walk:

- Mean:
 \[
 \left\langle \mathbf{R} \right\rangle = \sum_{i=1}^{N} \mathbf{b}_i
 \]
- Variance:
 \[
 \left\langle \mathbf{R} \cdot \mathbf{R} \right\rangle = \sum_{i=1}^{N} \left\langle \mathbf{b}_i \cdot \mathbf{b}_i \right\rangle = N \left\langle b_i^2 \right\rangle
 \]

- Contour length of chain $= N b$

Probability distribution for R

- $p(x, y, z, N) = \left(\frac{3}{2\pi N b^2} \right)^{3/2} \exp \left(-\frac{3R^2}{2Nb^2} \right)$ Gaussian
 - Mean: $\left\langle \mathbf{R} \right\rangle = 0$
 - Variance: $\left\langle \mathbf{R} \cdot \mathbf{R} \right\rangle = \sum_{i=1}^{N} \left\langle b_i^2 \right\rangle = N \left\langle b_i^2 \right\rangle$

Probability that chain end is in volume

\[
\left\langle \alpha \right\rangle = \int dx_1 \cdots dx_N \int dy \int dz
\]

Limit of validity

- Calculate correction term
- $p(R, N) = \frac{1}{\sqrt{2\pi (r/2)^2}} \left[1 - \frac{3}{2\pi r^2} \right] \exp \left(-\frac{3R^2}{2Nb^2} \right)$ Gaussian
- $N \gg 1$, many links
- $R^2 \ll N b^2$, not valid for large extensions
- $R \to L = N b$

Force-extension behavior of a single molecule

- Let's constrain our system to fixed R:
 - Force f allowed to vary
 - Extension x fixed
The probability of random walk $p(R) = \frac{\Omega(R)}{\Omega_{total}}$ is the number of configurations with R over the total number of configurations for molecule R.

For a thermodynamic system, $\Delta A = -\Delta H + T \Delta S = -TS$; hence $S = k \ln \Omega(R)$.

$S = k \ln \frac{\Omega_{total}}{p(R)} + k \ln p(R)$

\[
\langle f \rangle = -kT \frac{\partial}{\partial R} \ln p(R) = \frac{3kT}{N_b^2} R
\]

where f is the internal force and R is the distance between ends of a polymer. N_b is the number of monomers in a segment.

\[
\langle f \rangle = \frac{3kT}{N_b^2} \frac{R}{L}
\]

Linear relationship between f and R.

For $N_b \gg 1$, $R \ll L$ and kT is not a function of R.

If $N_b \ll 1$, $R \gg L$.

$\frac{kT}{b}$ determines how difficult it is to extend a polymer. Smaller b means easier to extend ($N = \frac{b}{kT}$ for polymer, see configurations).

The form of $\langle f \rangle$ allows for $R > L$ (unphysical).

For DNA, the double stranded DNA,

- Kuhn length $b \approx 100$ nm
- Recall $\frac{kT}{1 \text{nm}} = 4 \text{ pN}$
- $\langle f \rangle \approx \frac{kT}{100 \text{ nm}} = 0.04 \text{ pN}$
- $\langle f \rangle_{DNA} \approx 0.12 \text{ pN} \cdot \frac{R}{L}$

See overview for arbitrary force (you fix force rather than extension).

By getting Ω, one can express $\langle f \rangle$ as a function of f.

\[
\langle f \rangle = N_b \left[\text{coth} \left(\frac{f_b}{kT} \right) - \frac{kT}{f_b} \right] \frac{f}{f_b}
\]

- Good approximation if $f_b \ll kT$ back to Gaussian.

- Check on Current Opinion plot that approximates fairly well the force-extension behavior of DNA.
- but not as well as the real model... WLC.
WLC - worm-like chain

Continuous, thin, flexible rod, constant contour length

\[s_{+L} = \text{arc length} \]

\[\frac{d}{ds} = \text{tangent at } s \]

.. Bending energy (from continuum mechanics)

\[E_{\text{bend}} = \frac{R_c}{2} \left(\frac{\partial \mathbf{t}}{\partial s} \right)^2 \]

- \(R_c \): radius of curvature
- \(\mathbf{t} \): tangent vector
- \(k_f \): flexural rigidity
- \(Y \): Young's modulus
- \(I \): second moment of inertia
- \(E_{\text{arc}} \): arc energy

\[\text{continuous model: } E_{\text{arc}} = \frac{k_f}{2} \int_0^L \left(\frac{\partial \mathbf{t}}{\partial s} \right)^2 ds \]

Total internal energy:

\[U = \frac{k_f}{2} \int_0^L \left(\frac{\partial \mathbf{t}}{\partial s} \right)^2 ds \]

Some properties of the worm-like chain model

- equilibrium (no force)

\[\langle \mathbf{t}(s) \cdot \mathbf{t}(s + \Delta s) \rangle = \exp \left(\frac{-\Delta s k T}{k_f} \right) \]

- persistence length

\[\frac{k_f}{k T} \]

- coil size

\[\langle R^2 \rangle = 2 \ell_p \left[\frac{L}{\ell_p} + \exp \left(\frac{-L}{\ell_p} \right) - 1 \right] \]

- two regimes

\[\ell_p \gg L \]

\[\text{rigid} \Rightarrow \langle R^2 \rangle \rightarrow L^2 \]

\[\ell_p \ll L \]

- flexible

\[\text{recall} \quad \langle R^2 \rangle_{\text{FJC}} = b L \]

\[\ell_p = \frac{b}{2} \]

Conversion between WLC & FJC