Formulating Hypothesis Testing Problems

Hypotheses about a random variable x are often formulated in terms of its distributional properties. Example, if property is a:

Null hypothesis $H_0: a = a_0$

Objective of **hypothesis testing** is to decide whether or not to **reject** this hypothesis. Decision is based on estimator \hat{a} of a:

Reject H_0: If observed estimate \hat{a} lies in **rejection region** R_{a0} ($\hat{a} \in R_{a0}$)

Do not reject H_0: Otherwise ($\hat{a} \notin R_{a0}$)

Select rejection region to obtain desired error properties:

| True situation | Test Result | $P(H_0|H_0) = 1 - \alpha$ | $P(\neg H_0|H_0) = \alpha$ (Type I Error) |
|----------------|-------------|---------------------------|--|
| H_0 true | Do not reject H_0 | $\hat{a} \notin R_{a0}$ | Reject H_0 | $\hat{a} \in R_{a0}$ |
| H_0 false | $P(H_0|\neg H_0) = \beta$ (Type II Error) | $P(\neg H_0|\neg H_0) = 1 - \beta$ |

Type I error probability α is called the test **significance level**.

Deriving Hypothesis Rejection Regions for Large Sample Tests

Hypothesis test is often based on a **standardized statistic** that depends on unknown true property and its estimate. Basic concepts are the same as used to derive confidence intervals (see Class 14).

An example is the z statistic:

$$z(\hat{a}, a) = \frac{\hat{a} - a}{SD(\hat{a})}$$

If the estimate is unbiased $E[z] = 0$ and $Var[z] = 1$.

Define a rejection region R_{z_0} in terms of z as:

$$R_{z_0} : \begin{align*}
 z(\hat{\alpha}, a_0) &\leq z_L \\
 z(\hat{\alpha}, a_0) &\geq z_U
\end{align*}$$

As rejection region grows Type I error increases and Type II error decreases (test is more likely to reject hypothesis).

As rejection region shrinks Type I error decreases and Type II error increases (test is less likely to reject hypothesis).

Usual practice is to select rejection region to insure that Type I error probability is equal to a specified value α.

For a two-sided test require that Type I error probability is distributed equally between intervals below z_L (probability $= \alpha/2$) and above z_U (probability $= \alpha/2$).

These probabilities are:

$$P[z(\hat{\alpha}, a_0) \leq z_L | H0] = P[z(\hat{\alpha}, a_0) \leq z_L] = F_z(z_L) = \frac{\alpha}{2}$$

$$P[z(\hat{\alpha}, a_0) \geq z_U | H0] = P[z(\hat{\alpha}, a_0) \geq z_U] = 1 - F_z(z_U) = \frac{\alpha}{2}$$

$$z_L = F_z^{-1}\left(\frac{\alpha}{2}\right) \quad z_U = F_z^{-1}\left(1 - \frac{\alpha}{2}\right)$$

For large samples $z(\hat{\alpha}, a_0)$ has a unit normal distribution. Use the MATLAB function `norminv` to evaluate F_z^{-1}.

If the definition of z is applied a two-sided rejection region R_{a0} can also be written directly in terms of the estimate $\hat{\alpha}$:

$$R_{a0} : \begin{align*}
 \hat{\alpha} &\leq a_L = a_0 + F_z^{-1}\left(\frac{\alpha}{2}\right)SD[\hat{\alpha}] \\
 \hat{\alpha} &\geq a_U = a_0 + F_z^{-1}\left(1 - \frac{\alpha}{2}\right)SD[\hat{\alpha}]
\end{align*}$$

p Values

p value is largest significance level resulting in acceptance of $H0$.

For a symmetric two-sided rejection region and a large sample:
\[p / 2 = 1 - F_z \left(\frac{\hat{a} - a_0}{SD(\hat{a})} \right) \quad \hat{a} \geq a \]
\[p / 2 = F_z \left(\frac{\hat{a} - a_0}{SD(\hat{a})} \right) \quad \hat{a} \leq a_0 \]

For large samples use the MATLAB function `normcdf` to compute \(p \) from \(\hat{a} \) and \(SD[\hat{a}] \).

Special Case -- Sample mean

Consider hypothesis about value of population mean \(a = E[x] \):

\[H_0: a = E[x] = a_0 \]

Base test on sample mean estimator \(m_x \). Obtain \(SD[m_x] \) from sample standard deviation:

\[SD[m_x] = \frac{SD[x]}{\sqrt{N}} \approx \frac{s_x}{\sqrt{N}} \]

Example: Testing whether mean is significantly different from zero

Suppose \(a_0 = 0 \), \(s_x = 3 \), \(N = 9 \), \(m_x = 1.2 \) and \(\alpha = .05 \):

\[R_{a_0}: m_x \leq a_L = 0 + F_z^{-1} \left(\frac{0.05}{2} \right) \frac{3}{\sqrt{9}} = -1.96 \]
\[m_x \geq a_U = 0 + F_z^{-1} \left(1 - \frac{0.05}{2} \right) \frac{3}{\sqrt{9}} = +1.96 \]

In this case hypothesis is **not rejected** since \(m_x = 1.2 \) does not lie in \(R_{a_0} \). The two-sided \(p \)-value is (see plot):

\[1 - p / 2 = F_z \left(\frac{m_x - a_0}{s_x / \sqrt{N}} \right) = F_z \left(1.2 - 0 \right) \left[\frac{3}{\sqrt{9}} \right] = F_z \left[1.2 \right] = .89 \]

\[p = 0.22 \]
Normal Probability Plot

1 - p/2

Probability

Data