Pricing of Transportation Services: Theory and Practice II

Moshe Ben-Akiva

1.201 / 11.545 / ESD.210
Transportation Systems Analysis: Demand & Economics

Fall 2008
Review and Outline

● Review of Previous Lecture:
 – Review of cost and demand concepts
 – Public sector pricing in theory
 – Issues with marginal cost pricing
 – Congestion pricing in theory

● Outline of this Lecture:
 – Public sector pricing in practice:
 • **Congestion pricing**
 • Pricing vehicle emissions
 • Public Transportation
 – Private sector pricing in theory and in practice
 – Appendix: Examples of congestion pricing
Characteristics of the congestion problem

- Severity
 - Magnitude: between Lyon and Paris on 16 Feb 1980, a traffic jam (queue) of 109 miles (176 km) (Guinness Book of World Records, 2007)

- Economic cost
 - Urban Mobility Report (TTI, 2004): 2002 cost of congestion in U.S. (lost time, excess fuel, increased VOC) was US$63.5 billion

- Unpredictability
 - It’s estimated that over half the delays on freeways in the U.S. are due to non-recurrent events (accidents, breakdowns, etc.)
Congestion Pricing in Practice (cont.)

- Concerns over congestion pricing
 - “Driving should be free”
 - Equity
 - Use of revenues
 - Privacy/Confidentiality
Congestion Pricing in Practice (cont.)

- Ideal features of a congestion pricing scheme
 - Sensitivity to true marginal costs of auto use
 - By level of congestion
 - By time of day
 - By direction of travel
 - By area of travel
 - Transparency
 - Predictability
Congestion Pricing in Practice (cont.)

● Short-term reactions to congestion pricing
 – Suppress trips
 – Change departure time
 – Change mode
 – Change destination/chain trips
 – Change route
 – Carpool (share costs, exploit exemptions)

● Long-term reactions to congestion pricing
 – Land use / activity system change
Examples of Congestion Pricing

- Singapore Area Licensing Scheme (ALS) and Electronic Road Pricing (ERP)
- Trondheim toll ring
- Autoroute A1 (Paris – Lille)
- California SR-91 (“value pricing”)
- London congestion charging scheme
- Stockholm Congestion Charge
- New York City: tried but defeated politically
Examples of Congestion Pricing (cont.)

- Lessons learned:
 - Pricing does cause travelers to change their behavior
 - But wide variety of price levels / system impacts
 - Almost all pricing schemes to date are blunt
 (not very sensitive to congestion costs or levels)
 - Cordon or individual facility based
 - Limited variation by time of day (e.g. peak/off-peak)
 - Public acceptance is key to success
 - Perception of current traffic problems
 - Promise to use proceeds to fund local improvements
 or perception of choice options
 - Addressing confidentiality concerns
 - Political leadership
Outline

● Public sector pricing in practice:
 – Congestion pricing
 – Pricing vehicle emissions
 – Public Transportation
● Private sector pricing in theory
● Private sector pricing in practice:
 – Amtrak
 – Airlines
● Appendix: Examples of congestion pricing
Pricing Vehicle Emissions

- Increasing concerns over the **externalities** associated with the automobile:
 - Noise
 - Accidents
 - Petroleum Usage
 - Emissions
 - CO_2
 - NO_x
 - Particulates
Pricing Vehicle Emissions (cont.)

- Governments are looking for ways to reduce output of CO$_2$ and toxic emissions
- How to make these reductions while minimizing the overall welfare cost?
- Many available policy options:
 - Regulation/Standards (forcing technology)
 - Pricing
 - Taxes
 - Other rule-based approaches
Pricing Vehicle Emissions (cont.)

- Amount of emissions depends on
 - Amount of driving
 - Type of driving
 - Physical characteristics of vehicles and fuels
 - Vehicle maintenance

- Effect of changes will **not** be instantaneous – need a dynamic model

- Because drivers respond both to speeds and costs, should be considered simultaneously with congestion
Pricing Vehicle Emissions: EU Study*

- Reducing CO₂ emissions
 - Dominated by transport emissions
 - Projected to rise 40% in EU from 1990 to 2010

- Most cost-effective instrument would be **tax on carbon content of fuel**
 - Affects all behavioral “leverage” points
 - Allow consumers to equalize marginal costs appropriately

- But…taxes already high, and alternatives often limited, so is quite difficult politically

Pricing Vehicle Emissions: EU Study (cont.)

- Also – consumers appear to have high “discount rate” on purchasing fuel efficiency
- Found that to achieve 10% reduction in CO₂ emissions compared to baseline required 26% increase in fuel prices
 - Despite “myopia”, more than half came from technical improvements in vehicle fuel consumption
 - Modest reduction in mileage and car ownership
 - Moderate increase in speeds
Pricing Vehicle Emissions: EU Study (cont.)

- What about other options?
 - Standards
 - “Feebate” (taxes and subsidies on certain cars)
 - Feebate and fuel tax
 - Road pricing
- Best result appears to be combination of fuel taxes with differentiated purchase taxes (subsidies)
Outline

- Public sector pricing in practice:
 - Congestion pricing
 - Pricing vehicle emissions
 - Public Transportation pricing
- Private sector pricing in theory
- Private sector pricing in practice:
 - Amtrak
 - Airlines
- Appendix: Examples of congestion pricing
Public Transportation Pricing

- Current state:
 - Low fares cover under 50% of operating expenses. No contribution to capital expenses
 - High level of subsidy
Arguments for Low Fares

- The vicious cycle
- Economies of scale
- Second best pricing
- Equity considerations
The Vicious Cycle

- Assumes that after multiple fare increase the demand is elastic, $|E| > 1$
- Estimated elasticities $\sim (-0.4)$

Outline

- Public sector pricing in practice
- **Private sector pricing in theory**
 - Basic idea
 - Relation to marginal cost pricing
 - Price discrimination
 - Segmented pricing
 - Revenue-maximizing Price
- Private sector pricing in practice:
 - Amtrak
 - Airlines
- Appendix: Examples of congestion pricing
Private Sector Pricing

- Private firms maximize profit
- Profit = Total Revenue – Total Cost
- Max \(R(Q) – C(Q) \)

- Firms should set prices such that

\[
MR(Q) = MC(Q)
\]
Profit-Maximizing Price

- Total revenue
 \[R(Q) = p \cdot Q = D^{-1}(Q) \cdot Q \]

- Marginal revenue
 \[MR(Q) = p + Q \cdot \frac{\partial p}{\partial Q} = p + Q \cdot \frac{\partial D^{-1}(Q)}{\partial Q} \]

- Therefore
 \[p = MR(Q) - Q \times \frac{\partial D^{-1}(Q)}{\partial Q} \geq MC(Q) \]

\[\frac{p - MC(Q)}{p} = \frac{Q}{p} \cdot \frac{\partial D^{-1}(Q)}{\partial Q} = \frac{-1}{\frac{\partial Q}{\partial D^{-1}(Q)} \cdot \frac{p}{Q}} = \frac{-1}{E_{Q|p}} \]
Profit-Maximizing Price (cont.)

- Under competition

\[Q \cdot \frac{\partial D^{-1}(Q)}{\partial Q} \approx 0 \]

because the firm is a price-taker (its output does not affect market prices); hence:

\[p = MC(Q) \]

i.e., in a competitive market prices are likely to be close to marginal costs \(\Rightarrow \) social optimum.
Price Discrimination

- In a fully competitive market, if a firm tries to charge prices higher than marginal cost, it will be undercut.

- In a less competitive market, firms maximize profits by charging different prices ($P > MC$) to different customers.
Price Discrimination (cont.)

- First buyer willing to pay p_1 for Q_1, the firm charges p_1 and the revenue is $p_1 Q_1$
- Second buyer: p_2 for $(Q_2 - Q_1)$, the firm charges p_2
- Second buyer cannot sell his/her parts to the first buyer
- Monopolistic firm will produce Q^* where the marginal buyer is not willing to pay above the MC
- Price discrimination is economically efficient, but all the consumer surplus is extracted by the monopolist
Segmented Pricing

- Market for travel can be subdivided into different segments with different price sensitivities

- Various strategies of segmented pricing can increase revenue (e.g. regular commuters vs. business travelers)

- Revenue potential can be increased if price increases can be implemented for inelastic segments (i.e. business travelers) and vice versa
Segmented Pricing: Example

- Determination of the level of toll for a tunnel
- Separate price sensitivity for occasional travelers and commuters
- Offer discounts to commuters and charge high toll for occasional travelers
- More potential for profit maximization by attracting price-sensitive drivers without reducing the price for less price sensitive ones
- Concern for exceeding available capacity due to number of drivers paying the lowest toll
Revenue-Maximizing Price

- Often used when price changes have a negligible effect on cost
- Pricing changes to maximize revenue should be aimed at achieving and maintaining a price elasticity of -1
- Appropriate when marginal or variable cost is small compared to average cost
- Cost structures of most transportation services include some variable component
Revenue-Maximizing Price (cont.)

- So, a price increase that causes a demand decrease is generally associated with decreasing total cost and vice versa.
- A price reduction is profitable only if the increase in revenue is greater than the increase in total variable cost.
- If the cost structure includes a relatively small variable cost, revenue maximizing price should be set to maintain demand in the range where price elasticity is slightly smaller than -1.
Revenue-Maximizing Price (cont.)

- If demand is highly elastic, a price reduction should be implemented to keep the price elasticity in the elastic range and bring it closer to \(-1\)
- But large price reductions may increase demand well beyond capacity
- Adding capacity would require significant incremental costs that may be infeasible
- So, pricing strategy should be to raise prices in inelastic markets and vice versa if there is enough capacity available
Profit Maximizing Price, Competition, and Price Discrimination

● In an imperfectly competitive market
 – The firm will set the price above marginal cost
 – Its extent will depend on the price sensitivity

● In case of segmented pricing (or price discrimination)
 – If the price charged to one customer does not affect the quantities purchased by others then this pricing rule applies to each individual customer or segment
 – The less sensitive the customer is to price, the more he/she will pay relative to others
Profit Maximizing Price, Competition, and Price Discrimination (cont.)

- Perfect competition makes price discrimination difficult
 - As competitors will undercut any firm charging more than the marginal cost
- Price discrimination is a sign that competition is imperfect
- In a perfectly competitive market, the prices all firms charge to all customers should be the same
Outline

● Public sector pricing in practice
● Private sector pricing in theory
 – Basic idea
 – Relation to marginal cost pricing
 – Price discrimination
 – Segmented pricing
 – Revenue maximizing
● Private sector pricing in practice:
 – Amtrak
 – Airlines
● Appendix: Examples of congestion pricing
Example: Pricing at Amtrak

Strategy

- Objective is to maximize revenue
 - Consistent with a fixed cost structure

- To achieve the objective, Amtrak must have knowledge of passenger price sensitivity and competition

- Amtrak’s pricing strategy
 - To raise prices in inelastic markets and to lower prices in elastic market with excess capacity to meet increased demand
 - Else extra demand will need excess capacity
Example: Pricing at Amtrak

● Main alternatives are travel by car, air or bus

● Monitor changes in the price of gasoline and air travel and respond accordingly
 – For example, Amtrak will follow an airline fare increase by a corresponding fare increase for its service

● Revenue gains by changing fares in a competitive market, i.e. travel between end points, may be offset by revenue losses in less competitive markets, i.e. travel involving intermediate points along the same route
Example: Pricing at Amtrak
Segmented Pricing and Yield Management

- Pleasure travelers vs. business travelers
- Offer discounts to early purchasers of tickets
- The danger of segmented pricing
 - Lower fare passengers may largely take the available inventory (if it is fixed)
- So, yield management system is used to adjust seat inventory (seat allocation among different price levels based on expected demand)
- Yield management can only be applied to reserved trains (as it depends on advance bookings)
Example: Pricing at Amtrak
Effectiveness of Pricing Decisions

• Measuring price elasticities based on two sources
 – Previous price changes and their effect on demand and revenue
 – Explicit experiments designed to investigate price sensitivities

• Pricing experiments can only be conducted in certain markets characterized by
 – Relatively low demand with excess capacity even at minimal train frequency
Example: Airline Pricing

● Deregulation in the industry since 1978
● Successful experience
 – Average lower fares
 – Increase in air travel
● More variation in fares across segments
 – Due to differences in airline costs and to price discrimination

● Much more on this in Prof. Belobaba’s upcoming lectures
Conclusions

- Pricing and investment policies for transportation services are often far from optimal
- Marginal cost pricing difficult in transportation sector
- Dissatisfaction with the outcome of public transportation services
- Increasing use of price discrimination (segmented pricing)
- Knowledge of demand and price sensitivities is critical
Appendix

Examples of congestion pricing
Applied Examples of Congestion Pricing

- Singapore Area Licensing Scheme (ALS) and Electronic Road Pricing (ERP)
- Trondheim (Norway) Toll Ring
- Autoroute A-1, Paris – Lille, France
- California SR91 “Value Pricing”
- London Congestion Charging Scheme
- Stockholm Congestion Tax
- New York City (tried, but failed)