1.264 Lecture 2

System process fundamentals

Today: Find a homework partner. Next class: Read chapters 4-6. Hand in exercise solution after class.
Case study: Demand forecasting, version 1

• Do you have questions on what happened?
• What are your overall reactions to this?
 – Does it seem familiar? Has this happened to you?
 – What related experiences have you had?
• Discussion items
 – List as many errors that were made by this team as you can.
 – What did the team do right?
 – What project management method was used? Was it appropriate?
 – What should they have done to succeed?
• Summary
Case study: Demand forecasting, version 3

- Do you have questions on what happened?
- What are your overall reactions to this?
 - Does it seem familiar? Has this happened to you?
 - What related experiences have you had?
- Discussion items
 - At the 4 month point, what do you, Pat, do? You can have some additional resources; specify those you would like to have.
 - With your suggested actions, will you be able to deliver the system on time, in 11 months? Why or why not?
 - With your suggested actions, how certain will you be at month 8 whether you can deliver on time?
- Summary
Technical fundamentals

Spiral model as basis for development

Image by MIT OpenCourseWare.
Process choices

<table>
<thead>
<tr>
<th>Lifecycle model</th>
<th>Strengths</th>
<th>Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code and fix</td>
<td>None known</td>
<td>Unpredictable, chaotic</td>
</tr>
<tr>
<td>Waterfall</td>
<td>Efficient if requirements known. Good for repeated applications.</td>
<td>No feedback or change in process. Cumbersome, likely to fail (2% success DoD)</td>
</tr>
<tr>
<td>Rapid prototype</td>
<td>Aligns with client needs</td>
<td>Insufficient structure to deliver production system</td>
</tr>
<tr>
<td>Open source</td>
<td>Uses skills of large number of people</td>
<td>Unstructured, almost all efforts fail.</td>
</tr>
<tr>
<td>Agile process</td>
<td>Flexible, can be fast</td>
<td>Works best/only on small projects</td>
</tr>
<tr>
<td>Spiral model</td>
<td>Manages risks, feedback, well-defined. Works on large projects</td>
<td>Requires skill and discipline</td>
</tr>
</tbody>
</table>
Different process models for 12 month project

• Traditional, chaotic approach:
 – 1 month requirements, left incomplete
 – 1 month design, left incomplete
 – 9 months development, with substantial rework
 – 1 month test/QA (quality assurance), which is insufficient: poor quality, late

• Waterfall, based on past metrics:
 – 3 months requirements
 – 3 months design
 – 3 months development
 – 3 months test/QA, produces system but with limited scope

• Spiral (often called ‘agile’ with ‘sprints’ rather than spirals)
 – 3 spirals, each 4 months:
 • 1 month requirements
 • 1 month design
 • 1 month implementation
 • 1 month test/QA/review
Exercise

• What process would you use?
 – Off-the-shelf accounting system implementation in a middle size company, your 20th one
 – Reducing number of distribution centers significantly in a large company
 – Privatizing bus operations funded by a public transportation agency
 – Revamping your company’s marketing strategy

• Take 10 minutes:
 – Recommend a process
 – List top 3 factors or key unknowns to be researched early in the decision
Solution (one of many)

• What process would you use?
 – Off-the-shelf accounting system implementation in a middle size company, your 20th one
 • Waterfall
 – Reducing number of distribution centers significantly in a large company
 • Spiral.
 – 1: identify key issues, risks
 – 2: develop plans based on overall corporate goals
 – 3: refine plans with the field, vendors
 – Privatizing bus operations funded by a public transportation agency
 • Spiral:
 – 1: define procurement process, contract options, suppliers
 – 2: develop plans based on agency goals
 – 3: review and revise plans after discussion with vendors
 – Revamping your company’s marketing strategy
 • Rapid prototype: Mock up and assess many ideas
Requirements fundamentals

• Requirements: what should the system do?
 – What we’re doing in homework this semester is essentially an extended requirements analysis
 • The first spiral can often be viewed as requirements step
 – Requirements steps
 • Text description of the system: a necessary overview
 • Use cases (UML) to list scenarios
 • Text descriptions of scenarios to give more detail
 • Initial version of user interface/new process and manual
 • Data model (entity-relationship diagram)
 – As complete picture of all data (or objects) in the system as possible. Determines the business rules.
 • Other UML diagrams as needed: state, activity, component
 – These needs are the same whether you are implementing, configuring, modifying or developing a system, business process,
Design fundamentals

- Design: how does the system or process work?
 - Data model, complete
 - User interface or process mockup
 - UML diagrams
 - System architecture (components, interfaces, hardware…)
 - Use cases (lists of scenarios), complete
 - Scenarios, as text
 - Class diagrams (for software systems)
 - Extend data models to cover all behaviors in the system
 - Sequence and collaboration models (dataflow diagrams)
 - Dynamic view of multiple flows of data and control in the system
 - State models (state transition diagrams)
 - Dynamic and complete view of the data values and logic
- These needs are the same whether you are implementing, configuring, modifying or developing a system
Implementation fundamentals

• Requirements and design dictate development success
 – 60% of system defects exist at requirements/design time
 – Cost of correcting errors (relative) at different stages:
 • Requirements: $100
 • Design: $500
 • Implementation/QA: $2,500
 • Operation: $12,500

• Implementation practices: CMMI (capabilities maturity model) – development, acquisition, services
 – Have requirements, design documents, UML, data models
 – Measure team size, system size, defects, effort, schedule
 – Use a defined implementation process: spiral, agile, etc.
 – Integrate and bring system to usable state frequently
 – Perform quality assurance continuously
 – Get mechanics right: version control, documents, reviews
Quality assurance fundamentals

- QA starts at project initiation
 - Requirements scrubbing and reviews
 - Design reviews
 - Implementation inspections and walk-throughs

- Testing
 - System tests find 10-60% of defects
 - Reviews and inspections find 60-90%: more critical than testing
 - This holds for software, hardware, process changes, ….

- Error prone components: identify and re-do
 - 57% of errors in 7% of software modules (IBM surveys)
 - Similar numbers for non-software projects
 - Often one “god” component that implements all the logic is very complex and has many errors
 - Indicates system was not decomposed properly into modules or cooperative roles
Risk management

- Risk management
 - Spiral model is all about managing risk
 - First spiral focuses on riskiest areas: requirements, design, implementation in most difficult areas
 - First spiral assessment then allows substantial revision of requirements and design, based on having tried to do it once already
 - Second spiral has much cleaner requirements, design, and can usually produce a system close to what’s needed
 - Third spiral cleans up issues, makes system manageable and stable
 - Keep a top 10 risks list
 - Assess probability of risk, magnitude of loss if it occurs
 - Rank and manage the list frequently (often weekly)
Summary

• Project definition and development process is time consuming and labor intensive
 – There are massive pressures to do this quickly

• The seemingly straightforward, but deceptively difficult, part of this process is to clearly understand and specify the requirements the project must satisfy
 – Because of the cumulative nature of the project process, mistakes made in early stages but only identified at a later stage result in major delays and cost increases
 – The spiral model, based on requirements, UML, data and class diagrams is used to manage these risks
 • Other agile models can also be used
 – “Lord Krishna said, you and I have been reborn many times. I remember them but you do not.” -Bhagavad Gita